
EECS 150 Spring 2012 Project: Cleanup, Optimizations, and Extra

Credit

Prof. John Wawrzynek
TAs: James Parker, Daiwei Li, Shaoyi Cheng

Department of Electrical Engineering and Computer Sciences
College of Engineering, University of California, Berkeley

Revision 1

1 Introduction

The final week of the term project does not have a required checkpoint. Use this week for code
cleanup, optimizations, late checkpoints, and extra credit projects. All of this is optional.

2 Cleanup and Optimizations

A small portion of the final project grade will be based on resource usage (i.e. LUT count), codebase
quality, and performance.

2.1 Resource usage

LUT counts should be in the range of 5,000 - 6,500. Groups with significantly lower counts may
receive extra credit, and groups with significantly higher LUT counts will be penalized.

2.2 Performance

Your design must be able to run at 50 MHz.
To simplify the pixel feeder we did not require enabling the CPU and DVI to run in different

clock domains. Adding this capability and scaling the CPU clock could be an extra credit project.

2.3 Quality

Your code should be modular, well documented, and consistently styled. Projects with incompre-
hensible code will upset the graders.

3 Extra Credit

Teams that have completed checkpoint 5 are eligible to receive extra credit worth up to 10% of
the project grade. The following are suggested projects that are feasible in one week. The extra
credit amounts given for each category are an upper bound; the actual amount will depend on the

1



difficulty of the project and the results.

Easy (up to 3% extra credit):

• Program Profiling: Add counters to track instruction categories (arithmetic, branch,
load/store) as well as cache hit rates. Present this information for mmult and at least one
other program.

• Static Graphics: Create a C program that displays an interesting image or graphic on the
display.

Medium (up to 6% extra credit):

• Benchmarking: Port a popular benchmark to run on the MIPS150 processor and report
results. A memory-intensive benchmark is preferable.

• Program Optimization: The provided mmult implementation is not efficient. Optimize the
program for your processor and report performance gains.

• Animated Graphics: Create a C program that displays an interesting animation or moving
image.

Difficult (up to 10% extra credit):

• Interactive Graphics: Create a graphics demonstration that reacts to inputs (either from
serial or GPIO buttons). Games (e.g. helicopter, pong) will be well-received by the class and
staff!

• Double-buffered graphics: Implement double buffering and create a simple demonstration
showing tear-free graphics.

• Graphic Terminal: Show the bios150 shell on the display, using either hardware or software
character drawing.

• Vector image drawing: Modify the bios to accept a stream of points, where every set of 4
specifies a line. Create a script (based on ~cs150/bin/coe_to_serial) that sends a file and
instructs the bios to draw the lines.

• Audio output: Add an audio interface to the CPU.

• Triangle Shader: Build a hardware triangle shader.

Detailed specifications for these suggestions will not be provided. As such, we recommend that
you consult with a TA before starting the project to make sure you are on the right track.

Teams may also propose their own project; however, it must be approved by a TA to receive
extra credit.

4 Final Project Checkoff

To ensure the project grade accurately reflect your work, the final project checkoff will consist of
meeting with the TAs to discuss what works, what doesn’t, testing methodology, test coverage,
and any other relevant factors. Early checkoff may be done during regularly scheduled lab sections.
The final checkoff will be 4-5 PM, April 27.

2


	Introduction
	Cleanup and Optimizations
	Resource usage
	Performance
	Quality

	Extra Credit
	Final Project Checkoff

