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Introduction
• High-level Design Specifies:

– How data is moved around and operated on.
– The architecture (sometimes called micro-architecture):

• The organization of state elements and combinational logic blocks
• Functional specification of combinational logic blocks

• Optimization
– Deals with the task of modifying an architecture and data 

movement procedure to meet some particular design requirement:
• performance, cost, power, or some combination.

• Most designers spend most of their time on high-level 
organization and optimization
– modern CAD tools help fill in the low-level details and optimization

• gate-level minimization, state-assignment, etc.
– A great deal of the leverage on effecting performance, cost, and 

power comes at the high-level.
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One Standard High-level Template

• Controller
– accepts external and control 

input, generates control and 
external output and sequences 
the movement of data in the 
datapath.

• Datapath
– is responsible for data 

manipulation.  Usually includes 
a limited amount of storage.

• Memory
– optional block used for long 

term storage of data structures.

• Standard model for CPUs, 
micro-controllers, many other 
digital sub-systems.

• Usually not nested.
• Sometimes cascaded:
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RTL

• At the high-level we view these systems as a collection of state 
elements and CL blocks.

• “RTL” is a commonly used acronym for “Register Transfer 
Level” description.

• It follows from the fact that all synchronous digital system can be 
described as a set of state elements connected by combinational 
logic blocks.

• Though not strictly correct, some also use “RTL” to mean the 
Verilog or VHDL code that describes such systems.
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Register Transfer “Language” Descriptions
• We introduce a language for 

describing the behavior of 
systems at the register transfer 
level.

• Can view the operation of digital 
synchronous systems as a set 
of data transfers between 
registers with combinational 
logic operations happening 
during the transfer.

• We will avoid using “RTL” to 
mean “register transfer 
language.”

• RT Language comprises a set of 
register transfers with optional 
operators as part of the transfer.

• Example:
  regA !  regB
  regC !  regA + regB
  if (start==1) regA !  regC
• My personal style:

– use “;” to separate transfers that 
occur on separate cycles.

– Use “,” to separate transfers 
that occur on the same cycle.

• Example (2 cycles):
  regA !  regB, regB !  0;
  regC !  regA;
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Example of Using RT Language

ACC !  ACC + R0, R1 !  R0;
ACC !  ACC + R1, R0 !  R1;
R0 !  ACC;
   ¥
   ¥ 
   ¥
   

• In this case:  RT Language 
description is used to sequence 
the operations on the datapath 
(dp).

• It becomes the high-level 
specification for the controller.

• Design of the FSM controller 
follows directly from the RT 
Language sequence.  FSM 
controls movement of data by 
controlling the multiplexor 
control signals.
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Example of Using RT Language
• Sometimes RT Language is used as 

a starting point for designing both 
the datapath and the control:

• example:  
  regA !  IN;
    regB !  IN;
    regC !  regA + regB;
    regB !   regC;
• From this we can deduce:

– IN must fanout to both regA and 
regB

– regA and regB must output to an 
adder

– the adder must output to regC
– regB must take its input from a mux 

that selects between IN and regC

• What does the datapath look 
like:

• The controller:
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List Processor Example

• RT Language gives us a framework for making high-level 
optimizations.

• General design procedure outline:
1. Problem, Constraints, and Component Library Spec.
2. “Algorithm” Selection
3. Micro-architecture Specification
4. Analysis of Cost, Performance, Power
5. Optimizations, Variations
6. Detailed Design
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1. Problem Specification
• Design a circuit that forms the sum of all the 2's complement integers 

stored in a linked-list structure starting at memory address 0:

• All integers and pointers are 8-bit. The link-list is stored in a memory 
block with an 8-bit address port and 8-bit data port, as shown below. 
The pointer from the last element in the list is 0.  At least one node in 
list.

I/Os:
– START resets to head of 

list and starts addition 
process.

– DONE signals completion
– R holds the final result

9
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1. Other Specifications
• Design Constraints:

– Usually the design specification puts a restriction on cost, 
performance, power or all.  We will leave this unspecified for now 
and return to it later.

• Component Library:
   component  delay
   simple logic gates  0.5ns
   n-bit register  clk-to-Q=0.5ns
      setup=0.5ns
   n-bit 2-1 multiplexor 1ns
   n-bit adder  (2 log(n) + 2)ns
   memory   10ns read (asynchronous read)
   zero compare  0.5 log(n)

   (single ported memory)

Are these reasonable?
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Review of Register with “Load Enable”
• Register with Load Enable:

• Allows register to be either be loaded on selected clock posedge or 
to retain its previous value.

• Assume both data and LD require setup time = 0.5ns.

• Assume no reset input.

Functional 
description only.  
Transistor level 
circuit has lower 
input delay.
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2. Algorithm Specification
• In this case the memory only allows one access per cycle, so the algorithm is 

limited to sequential execution. If in another case more input data is available 
at once, then a more parallel solution may be possible. 

• Assume datapath state registers NEXT and SUM.
– NEXT holds a pointer to the node in memory.
– SUM holds the result of adding the node values to this point.

  If (START==1) NEXT! 0, SUM! 0;
  repeat  {
    SUM! SUM + Memory[NEXT+1];
    NEXT! Memory[NEXT];
   } until (NEXT==0);
  R! SUM, DONE! 1; 

12

This RT Language “code” becomes the basis for DP and controller.



Spring 2012 EECS150 - Lec22-hld1 Page 

3. Architecture #1
Direct implementation of RTL description:

Datapath

Controller

If (START==1) NEXT! 0, SUM! 0;
    repeat  {
        SUM! SUM + Memory[NEXT+1];
        NEXT! Memory[NEXT];
 } until (NEXT==0);
R! SUM, DONE! 1; 
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4. Analysis of Cost, Performance, and Power
• Skip Power for now.
• Cost:

– How do we measure it?  # of transistors? # of gates? # of CLBs?
– Depends on implementation technology.  Often we are just 

interested in comparing the relative cost of two competing 
implementations. (Save this for later)

• Performance:
– 2 clock cycles per number added.
– What is the minimum clock period?
– The controller might be on the critical path.  Therefore we need to 

know the implementation, and controller input and output delay.
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Possible Controller Implementation

• Based on this, what is the controller input and output delay?

15



Spring 2012 EECS150 - Lec22-hld1 Page 

4. Analysis of Performance

Other paths exist for 
each cycle in the 
loop.  These are the 
worst case.
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4. Analysis of Performance
• Detailed timing:

clock period (T) = max (clock period for each state)
T > 31ns, F < 32 MHz

• Observation:
COMPUTE_SUM state does most of the work.  Most of the 

components are inactive in GET_NEXT state.
GET_NEXT does:  Memory access + …
COMPUTE_SUM does: 8-bit add, memory access, 15-bit add + …

• Conclusion:
Move one of the adds to GET_NEXT.
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5. Optimization
• Add new register named NUMA, for address of number to 

add.
• Update code to reflect our change (note still 2 cycles per 

iteration):

  If (START==1) NEXT! 0, SUM! 0, NUMA! 1;
  repeat {
    SUM! SUM + Memory[NUMA];
    NUMA! Memory[NEXT] + 1,
    NEXT! Memory[NEXT] ;
   } until (NEXT==0); 
  R! SUM, DONE! 1;  
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5. Optimization
• Architecture #2:

• Incremental cost: addition of another register and mux.  

If (START==1) NEXT! 0, SUM! 0, NUMA! 1;
    repeat {
        SUM! SUM + Memory[NUMA];
        NUMA! Memory[NEXT] + 1, NEXT! Memory[NEXT] ;
        } until (NEXT==0); 
R! SUM, DONE! 1;  
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5. Optimization, Architecture #2
• New timing:
Clock Period (T) = max (clock 

period for each state)

T > 23ns, F < 43Mhz

• Is this worth the extra cost?
• Can we lower the cost?

• Notice that the circuit now 
only performs one add on 
every cycle.  Why not share 
the adder for both cycles?

20



Spring 2012 EECS150 - Lec22-hld1 Page 

5. Optimization, Architecture #3

• Incremental cost:
– Addition of another mux and control (ADD_SEL).  Removal of an 8-

bit adder.
• Performance:

– No change.  
• Change is definitely worth it.
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Resource Utilization Charts
• One way to visualize these (and other possible) optimizations is 

through the use of a resource utilization charts.
• These are used in high-level design to help schedule operations on 

shared resources.
• Resources are listed on the y-axis.  Time (in cycles) on the x-axis.
• Example:
memory fetch A1  fetch A2
bus                fetch A1  fetch A2
register-file  read B1  read B2
ALU    A1+B1  A2+B2
  cycle     1     2     3     4     5     6     7

• Our list processor has two shared resources:  memory and adder
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List Example Resource Scheduling
• Unoptimized solution: 1. SUM! SUM + Memory[NEXT+1];  2. NEXT! Memory[NEXT];
  memory    fetch x         fetch next      fetch x         fetch next
  adder1   next+1    next+1
  adder2   sum    sum
        1  2     1  2

• How about the other combination: add x register
  memory  fetch x fetch next    fetch x    fetch next
  adder  numa sum      numa      sum
   1. X! Memory[NUMA],  NUMA! NEXT+1;
   2. NEXT! Memory[NEXT],  SUM! SUM+X;

• Does this work?  If so, a very short clock period.  Each cycle could have 
independent fetch and add.  T = max(Tmem, Tadd) instead of Tmem+ Tadd.

• Optimized solution: 1. SUM! SUM + Memory[NUMA];  
                2. NEXT! Memory[NEXT],  NUMA! Memory[NEXT]+1;

  memory             fetch x     fetch next    fetch x    fetch next
  adder  sum    numa      sum      numa
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List Example Resource Scheduling
• Schedule one loop iteration followed by the next:

• How can we overlap iterations?  next2 depends on next1.
– “slide” second iteration into first (4 cycles per result):

– or further:

 The repeating pattern is 4 cycles.  Not exactly the pattern what we 
were looking for.  But does it work correctly?

Memory   next1                           x1        next2                           x2 
adder              numa1                      sum1               numa2                      sum2 

Memory   next1                           x1           next2                           x2 
adder              numa1                      sum1   numa2                      sum2 

Memory   next1      next2         x1         x2          next3     next4          x3   x4

adder              numa1   numa2    sum1    sum2  numa3   numa4    sum3       sum4 
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List Example Resource Scheduling
• In this case, first spread out, then pack.

   1. X! Memory[NUMA],  NUMA! NEXT+1;
   2. NEXT! Memory[NEXT],  SUM! SUM+X;
• Three different loop iterations active at once.
• Short cycle time (no dependencies within a cycle)
• full utilization (only 2 cycles per result)
• Initialization:  x=0, numa=1, sum=0, next=memory[0]
• Extra control states (out of the loop)

– one to initialize next, clear sum, set numa
– one to finish off.  2 cycles after next==0.

Memory   next1                                            x1 
adder              numa1                                       sum1

Memory   next1                        next2          x1        next3       x2         next4       x3 
adder              numa1                    numa2  sum1    numa3   sum2     numa4    sum3 

25



Spring 2012 EECS150 - Lec22-hld1 Page 

5. Optimization, Architecture #4
• Datapath:

• Incremental cost:
– Addition of another register & mux, adder mux,  and control.

• Performance: find max time of the four actions
  1. X! Memory[NUMA],   0.5+1+10+1+1+0.5 = 14ns 
      NUMA! NEXT+1; same for all "  T>14ns, F<71MHz
  2. NEXT! Memory[NEXT],  
      SUM! SUM+X;

LD_NUMA
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