
Spring 2012 EECS150 - Lec22-hdl1 Page

EECS150 - Digital Design
Lecture 22 - High-Level Design

(Part 1)

April 5, 2010
John Wawrzynek

1

Spring 2012 EECS150 - Lec22-hld1 Page

Introduction
• High-level Design Specifies:

– How data is moved around and operated on.
– The architecture (sometimes called micro-architecture):

• The organization of state elements and combinational logic blocks
• Functional specification of combinational logic blocks

• Optimization
– Deals with the task of modifying an architecture and data

movement procedure to meet some particular design requirement:
• performance, cost, power, or some combination.

• Most designers spend most of their time on high-level
organization and optimization
– modern CAD tools help fill in the low-level details and optimization

• gate-level minimization, state-assignment, etc.
– A great deal of the leverage on effecting performance, cost, and

power comes at the high-level.

2

Spring 2012 EECS150 - Lec22-hld1 Page

One Standard High-level Template

• Controller
– accepts external and control

input, generates control and
external output and sequences
the movement of data in the
datapath.

• Datapath
– is responsible for data

manipulation. Usually includes
a limited amount of storage.

• Memory
– optional block used for long

term storage of data structures.

• Standard model for CPUs,
micro-controllers, many other
digital sub-systems.

• Usually not nested.
• Sometimes cascaded:

3

Spring 2012 EECS150 - Lec22-hld1 Page

RTL

• At the high-level we view these systems as a collection of state
elements and CL blocks.

• “RTL” is a commonly used acronym for “Register Transfer
Level” description.

• It follows from the fact that all synchronous digital system can be
described as a set of state elements connected by combinational
logic blocks.

• Though not strictly correct, some also use “RTL” to mean the
Verilog or VHDL code that describes such systems.

4

Spring 2012 EECS150 - Lec22-hld1 Page

Register Transfer “Language” Descriptions
• We introduce a language for

describing the behavior of
systems at the register transfer
level.

• Can view the operation of digital
synchronous systems as a set
of data transfers between
registers with combinational
logic operations happening
during the transfer.

• We will avoid using “RTL” to
mean “register transfer
language.”

• RT Language comprises a set of
register transfers with optional
operators as part of the transfer.

• Example:
 regA ! regB
 regC ! regA + regB
 if (start==1) regA ! regC
• My personal style:

– use “;” to separate transfers that
occur on separate cycles.

– Use “,” to separate transfers
that occur on the same cycle.

• Example (2 cycles):
 regA ! regB, regB ! 0;
 regC ! regA;

5

Spring 2012 EECS150 - Lec22-hld1 Page

Example of Using RT Language

ACC ! ACC + R0, R1 ! R0;
ACC ! ACC + R1, R0 ! R1;
R0 ! ACC;
 ¥
 ¥
 ¥

• In this case: RT Language
description is used to sequence
the operations on the datapath
(dp).

• It becomes the high-level
specification for the controller.

• Design of the FSM controller
follows directly from the RT
Language sequence. FSM
controls movement of data by
controlling the multiplexor
control signals.

6

Spring 2012 EECS150 - Lec22-hld1 Page

Example of Using RT Language
• Sometimes RT Language is used as

a starting point for designing both
the datapath and the control:

• example:
 regA ! IN;
 regB ! IN;
 regC ! regA + regB;
 regB ! regC;
• From this we can deduce:

– IN must fanout to both regA and
regB

– regA and regB must output to an
adder

– the adder must output to regC
– regB must take its input from a mux

that selects between IN and regC

• What does the datapath look
like:

• The controller:

7

Spring 2012 EECS150 - Lec22-hld1 Page

List Processor Example

• RT Language gives us a framework for making high-level
optimizations.

• General design procedure outline:
1. Problem, Constraints, and Component Library Spec.
2. “Algorithm” Selection
3. Micro-architecture Specification
4. Analysis of Cost, Performance, Power
5. Optimizations, Variations
6. Detailed Design

8

Spring 2012 EECS150 - Lec22-hld1 Page

1. Problem Specification
• Design a circuit that forms the sum of all the 2's complement integers

stored in a linked-list structure starting at memory address 0:

• All integers and pointers are 8-bit. The link-list is stored in a memory
block with an 8-bit address port and 8-bit data port, as shown below.
The pointer from the last element in the list is 0. At least one node in
list.

I/Os:
– START resets to head of

list and starts addition
process.

– DONE signals completion
– R holds the final result

9

Note: We donÕt assume nodes are aligned on 2 Byte boundaries.

Spring 2012 EECS150 - Lec22-hld1 Page

1. Other Specifications
• Design Constraints:

– Usually the design specification puts a restriction on cost,
performance, power or all. We will leave this unspecified for now
and return to it later.

• Component Library:
 component delay
 simple logic gates 0.5ns
 n-bit register clk-to-Q=0.5ns
 setup=0.5ns
 n-bit 2-1 multiplexor 1ns
 n-bit adder (2 log(n) + 2)ns
 memory 10ns read (asynchronous read)
 zero compare 0.5 log(n)

 (single ported memory)

Are these reasonable?
10

Spring 2012 EECS150 - Lec22-hld1 Page

Review of Register with “Load Enable”
• Register with Load Enable:

• Allows register to be either be loaded on selected clock posedge or
to retain its previous value.

• Assume both data and LD require setup time = 0.5ns.

• Assume no reset input.

Functional
description only.
Transistor level
circuit has lower
input delay.

11

Spring 2012 EECS150 - Lec22-hld1 Page

2. Algorithm Specification
• In this case the memory only allows one access per cycle, so the algorithm is

limited to sequential execution. If in another case more input data is available
at once, then a more parallel solution may be possible.

• Assume datapath state registers NEXT and SUM.
– NEXT holds a pointer to the node in memory.
– SUM holds the result of adding the node values to this point.

 If (START==1) NEXT! 0, SUM! 0;
 repeat {
 SUM! SUM + Memory[NEXT+1];
 NEXT! Memory[NEXT];
 } until (NEXT==0);
 R! SUM, DONE! 1;

12

This RT Language “code” becomes the basis for DP and controller.

Spring 2012 EECS150 - Lec22-hld1 Page

3. Architecture #1
Direct implementation of RTL description:

Datapath

Controller

If (START==1) NEXT! 0, SUM! 0;
 repeat {
 SUM! SUM + Memory[NEXT+1];
 NEXT! Memory[NEXT];
 } until (NEXT==0);
R! SUM, DONE! 1;

13

Spring 2012 EECS150 - Lec22-hld1 Page

4. Analysis of Cost, Performance, and Power
• Skip Power for now.
• Cost:

– How do we measure it? # of transistors? # of gates? # of CLBs?
– Depends on implementation technology. Often we are just

interested in comparing the relative cost of two competing
implementations. (Save this for later)

• Performance:
– 2 clock cycles per number added.
– What is the minimum clock period?
– The controller might be on the critical path. Therefore we need to

know the implementation, and controller input and output delay.

14

Spring 2012 EECS150 - Lec22-hld1 Page

Possible Controller Implementation

• Based on this, what is the controller input and output delay?

15

Spring 2012 EECS150 - Lec22-hld1 Page

4. Analysis of Performance

Other paths exist for
each cycle in the
loop. These are the
worst case.

16

Spring 2012 EECS150 - Lec22-hld1 Page

4. Analysis of Performance
• Detailed timing:

clock period (T) = max (clock period for each state)
T > 31ns, F < 32 MHz

• Observation:
COMPUTE_SUM state does most of the work. Most of the

components are inactive in GET_NEXT state.
GET_NEXT does: Memory access + …
COMPUTE_SUM does: 8-bit add, memory access, 15-bit add + …

• Conclusion:
Move one of the adds to GET_NEXT.

17

Spring 2012 EECS150 - Lec22-hld1 Page

5. Optimization
• Add new register named NUMA, for address of number to

add.
• Update code to reflect our change (note still 2 cycles per

iteration):

 If (START==1) NEXT! 0, SUM! 0, NUMA! 1;
 repeat {
 SUM! SUM + Memory[NUMA];
 NUMA! Memory[NEXT] + 1,
 NEXT! Memory[NEXT] ;
 } until (NEXT==0);
 R! SUM, DONE! 1;

18

Spring 2012 EECS150 - Lec22-hld1 Page

5. Optimization
• Architecture #2:

• Incremental cost: addition of another register and mux.

If (START==1) NEXT! 0, SUM! 0, NUMA! 1;
 repeat {
 SUM! SUM + Memory[NUMA];
 NUMA! Memory[NEXT] + 1, NEXT! Memory[NEXT] ;
 } until (NEXT==0);
R! SUM, DONE! 1;

19

Spring 2012 EECS150 - Lec22-hld1 Page

5. Optimization, Architecture #2
• New timing:
Clock Period (T) = max (clock

period for each state)

T > 23ns, F < 43Mhz

• Is this worth the extra cost?
• Can we lower the cost?

• Notice that the circuit now
only performs one add on
every cycle. Why not share
the adder for both cycles?

20

Spring 2012 EECS150 - Lec22-hld1 Page

5. Optimization, Architecture #3

• Incremental cost:
– Addition of another mux and control (ADD_SEL). Removal of an 8-

bit adder.
• Performance:

– No change.
• Change is definitely worth it.

21

Spring 2012 EECS150 - Lec22-hld1 Page

Resource Utilization Charts
• One way to visualize these (and other possible) optimizations is

through the use of a resource utilization charts.
• These are used in high-level design to help schedule operations on

shared resources.
• Resources are listed on the y-axis. Time (in cycles) on the x-axis.
• Example:
memory fetch A1 fetch A2
bus fetch A1 fetch A2
register-file read B1 read B2
ALU A1+B1 A2+B2
 cycle 1 2 3 4 5 6 7

• Our list processor has two shared resources: memory and adder

22

Spring 2012 EECS150 - Lec22-hld1 Page

List Example Resource Scheduling
• Unoptimized solution: 1. SUM! SUM + Memory[NEXT+1]; 2. NEXT! Memory[NEXT];
 memory fetch x fetch next fetch x fetch next
 adder1 next+1 next+1
 adder2 sum sum
 1 2 1 2

• How about the other combination: add x register
 memory fetch x fetch next fetch x fetch next
 adder numa sum numa sum
 1. X! Memory[NUMA], NUMA! NEXT+1;
 2. NEXT! Memory[NEXT], SUM! SUM+X;

• Does this work? If so, a very short clock period. Each cycle could have
independent fetch and add. T = max(Tmem, Tadd) instead of Tmem+ Tadd.

• Optimized solution: 1. SUM! SUM + Memory[NUMA];
 2. NEXT! Memory[NEXT], NUMA! Memory[NEXT]+1;

 memory fetch x fetch next fetch x fetch next
 adder sum numa sum numa

23

Spring 2012 EECS150 - Lec22-hld1 Page

List Example Resource Scheduling
• Schedule one loop iteration followed by the next:

• How can we overlap iterations? next2 depends on next1.
– “slide” second iteration into first (4 cycles per result):

– or further:

 The repeating pattern is 4 cycles. Not exactly the pattern what we
were looking for. But does it work correctly?

Memory next1 x1 next2 x2
adder numa1 sum1 numa2 sum2

Memory next1 x1 next2 x2
adder numa1 sum1 numa2 sum2

Memory next1 next2 x1 x2 next3 next4 x3 x4

adder numa1 numa2 sum1 sum2 numa3 numa4 sum3 sum4

24

Spring 2012 EECS150 - Lec22-hld1 Page

List Example Resource Scheduling
• In this case, first spread out, then pack.

 1. X! Memory[NUMA], NUMA! NEXT+1;
 2. NEXT! Memory[NEXT], SUM! SUM+X;
• Three different loop iterations active at once.
• Short cycle time (no dependencies within a cycle)
• full utilization (only 2 cycles per result)
• Initialization: x=0, numa=1, sum=0, next=memory[0]
• Extra control states (out of the loop)

– one to initialize next, clear sum, set numa
– one to finish off. 2 cycles after next==0.

Memory next1 x1
adder numa1 sum1

Memory next1 next2 x1 next3 x2 next4 x3
adder numa1 numa2 sum1 numa3 sum2 numa4 sum3

25

Spring 2012 EECS150 - Lec22-hld1 Page

5. Optimization, Architecture #4
• Datapath:

• Incremental cost:
– Addition of another register & mux, adder mux, and control.

• Performance: find max time of the four actions
 1. X! Memory[NUMA], 0.5+1+10+1+1+0.5 = 14ns
 NUMA! NEXT+1; same for all " T>14ns, F<71MHz
 2. NEXT! Memory[NEXT],
 SUM! SUM+X;

LD_NUMA

26

