University of California at Berkeley
 College of Engineering Department of Electrical Engineering and Computer Science

EECS150, Spring 2010
Quiz 9: April $2^{\text {nd }}$
10 Minutes

Consider a system with generic FPGA architecture with 6-input LUTs and flip-flops, as shown below.

The timing characteristics of this system are detailed below:

- The shortest delay through the global routing fabric is 0.11 ns .
- The shortest delay through the 6LUT is 0.15 ns .
- The longest delay through the 6LUT is 0.53 ns .
- The delay through the MUX is 0.10 ns .
- The register Clock to Q delay is 0.47 ns .
- The flip-flop setup time is 0.15 ns .
- The flip-flop hold time is 0.24 ns .

Use this data to answer the following questions:

1. When building a 10 MHz processor, what is the largest number of consecutive LUTs allowed in one pipeline stage?
The clock period in this system is 100 ns .
Any path from flip flop to flip flop will look like this:

We simply have to solve for N in $100 n s \geq(0.47 n s+0.10 n s)+(N-1)(0.11 n s+0.53 n s+$ $0.10 n s)+(0.11 n s+0.53 n s+0.15 n s)$. The answer is 134 consecutive LUTs.
2. When building a shift register (using flip-flops), how much clock skew can the system tolerate without violating hold time?

The path follows the same pattern as in the solution above, but we are now fixing N at 1 , and solving for the largest subtractive term (clock skew). $0.24 s \leq(0.47 n s+0.10 n s+0.11 n s+0.15 n s+0.15 n s)-$ (skew). The answer is 0.74 ns .

