University of California at Berkeley
 College of Engineering
 Department of Electrical Engineering and Computer Science

EECS150, Spring 2010
Quiz 10: April $9^{t h}$
Solution

Consider the functions F and G:

$$
\begin{gathered}
F(a, b, c, d)=\bar{a} \bar{b} \bar{c} \bar{d}+a \bar{b} \bar{c} \bar{d}+\bar{a} \bar{b} c \bar{d}+a \bar{b} c \bar{d}+\bar{a} b \bar{c} d+a b \bar{c} d+\bar{a} b c d+a b c d \\
G(a, b, c, d, e, f)=F(a, b, c, d)(F(a, b, c, d)+a b e f)
\end{gathered}
$$

1. Express F in as few literals as possible.

This problem could have been done using algebraic simplification or KMaps. Notice that the terms are grouped in canonical sum-of-products form. This makes the KMap approach straightforward:
(a) Derive a truth-table given the minterms:

a	b	C	d	F
0	0	0	0	1
0	0	0	1	0
0	0	1	0	1
0	0	1	1	0
0	1	0	0	0
0	1	0	1	1
0	1	1	0	0
0	1	1	1	1
1	0	0	0	1
1	0	0	1	0
1	0	1	0	1
1	0	1	1	0
1	1	0	0	0
1	1	0	1	1
1	1	1	0	0
1	1	1	1	1

(b) Fill in and cover a 4-variable KMap given the truth table:

(c) By inspecting the KMap, we see that

$$
F(a, b, c, d)=\bar{b} \bar{d}+b d=\overline{b \oplus d}
$$

2. Express G in as few literals as possible.

This problem might have looked labor-intensive at first glance. The trick is to use the "absorption" property of boolean algebra:

$$
F(a, b)=a(a+b)=a
$$

Think about why this is true! If $a=0$, there is no way that F can evaluate to 1 . Likewise, if $a=1$, we are left with this expression:

$$
1(1+b)
$$

Which $=1$ always. Hence, the answer to this part is:

$$
G(a, b, c, d, e, f)=F(a, b, c, d)(F(a, b, c, d)+a b e f)=F(a, b, c, d)=\overline{b \oplus d}
$$

That is, the same result that we obtained from the first problem.

