
EECS150: Spring 2010 Project Checkpoint 1, MIPS150 Processor

UC Berkeley College of Engineering
Department of Electrical Engineering and Computer Science

Revision I

1 Time Table

ASSIGNED Friday, February 26th

DUE Week 9: Mar 16th, during your assigned lab section

2 Motivation

You will construct a pipelined (3 stage) implementation of a MIPS reduced instruction set (RISC) archi-
tecture. The required instruction set architecture is a strict subset of MIPS (documented in the check-
point 1 assignment), excluding floating point instructions, traps, misaligned memory accesses, branch
and link instructions, and branch likely instructions. Your processor will also exclude coprocessors, as
well as a few features normally built into processors to enable operating systems.

Figure 1 EECS150 Spring 2010 Computer System

Spring 2010 EECS150 lec01-intro Page

Final Project: Spring 2010

16

• Executes most commonly used MIPS instructions.
• Pipelined (high performance) implementation.

• Serial console interface for shell interaction, debugging.

• Ethernet interface for high-speed file transfer.

• Video interface for display with 2-D vector graphics acceleration.

• Supported by a C language compiler.

!"!!!"!!!!"

"!!"!!!!"!!

!!""""!!!"!

""!"!"!"!!!

!"#$%&'$()"

*+,)%-

!"!!!"!!!!"

"!!"!!!!"!!

!!""""!!!"!

""!"!"!"!!!

./$/

*+,)%-

*!012304

!"#$%&

'()"#*%+"

,$-".

'()"#*%+"

/012

3#%45$+6

7++"&"#%).#

89372:5$4

;<9,=2>.%#-

?)5"#(")

'()"#*%+"

Assuming your processor is built according to our specifications, you will be able to use a simplified
toolflow consisting of a functional simulator, assembler, C compiler, and some library code. The processor
will coordinate the function of all other components in your project system. Refer to Figure 1 for a bird’s-
eye view of the processor’s role in this project. Memory mapped I/O (you will implement this later in
the semester) will enable the processor to communicate with the other components in your system.

Although the design and implementation of this system are entirely up to you, we impose a small
set of requirements in order to better help you succeed in this project. In particular, we enforce a strict
requirement of CPI=1 (meaning that no instruction may stall the datapath, and the processor must

1

always perform 1 instruction per cycle). Additionally, you must implement your processor as a 3-stage
datapath (detailed in Section 4). The instruction set architecture features a branch/jump delay slot, as
well as a delay slot to reduce hardware overhead of guaranteeing one instruction per cycle.

3 Instruction Set

Your processor must implement the full subset of instructions depicted in Table 1. Instructions formats,
Opcode’s, and Funct fields are from the standard MIPS ISA and have been included for convenience.
Note that we will be using the architected branch, jump, and load delay slots to reduce
hardware overhead.

Table 1 SMIPSv2 Instruction Set

31 26 25 21 20 16 15 11 10 6 5 0

opcode rs rt rd shamt funct R-type
opcode rs rt immediate I-type
opcode target J-type

Load and Store Instructions
100011 base dest signed offset LW rt, offset(rs)
101011 base dest signed offset SW rt, offset(rs)

I-Type Computational Instructions
001001 src dest signed immediate ADDIU rt, rs, signed-imm.
001010 src dest signed immediate SLTI rt, rs, signed-imm.
001011 src dest signed immediate SLTIU rt, rs, signed-imm.
001100 src dest zero-ext. immediate ANDI rt, rs, zero-ext-imm.
001101 src dest zero-ext. immediate ORI rt, rs, zero-ext-imm.
001110 src dest zero-ext. immediate XORI rt, rs, zero-ext-imm.
001111 00000 dest zero-ext. immediate LUI rt, zero-ext-imm.

R-Type Computational Instructions
000000 00000 src dest shamt 000000 SLL rd, rt, shamt
000000 00000 src dest shamt 000010 SRL rd, rt, shamt
000000 00000 src dest shamt 000011 SRA rd, rt, shamt
000000 rshamt src dest 00000 000100 SLLV rd, rt, rs
000000 rshamt src dest 00000 000110 SRLV rd, rt, rs
000000 rshamt src dest 00000 000111 SRAV rd, rt, rs
000000 src1 src2 dest 00000 100001 ADDU rd, rs, rt
000000 src1 src2 dest 00000 100011 SUBU rd, rs, rt
000000 src1 src2 dest 00000 100100 AND rd, rs, rt
000000 src1 src2 dest 00000 100101 OR rd, rs, rt
000000 src1 src2 dest 00000 100110 XOR rd, rs, rt
000000 src1 src2 dest 00000 100111 NOR rd, rs, rt
000000 src1 src2 dest 00000 101010 SLT rd, rs, rt
000000 src1 src2 dest 00000 101011 SLTU rd, rs, rt

Jump and Branch Instructions
000010 target J target
000011 target JAL target
000000 src 00000 00000 00000 001000 JR rs
000000 src 00000 dest 00000 001001 JALR rd, rs
000100 src1 src2 signed offset BEQ rs, rt, offset
000101 src1 src2 signed offset BNE rs, rt, offset
000110 src 00000 signed offset BLEZ rs, offset
000111 src 00000 signed offset BGTZ rs, offset
000001 src 00000 signed offset BLTZ rs, offset
000001 src 00001 signed offset BGEZ rs, offset

The function of each instruction is shown in Table 2.

2

Table 2 ISA Functional Specification

Instruction RTL
LW R[$rt] = M [R[$rs] + SignExt(imm)](delayed)
SW M [R[$rs] + SignExt(imm)] = R[$rt]
ADDIU R[$rt] = R[$rs] + SignExt(imm)
SLTI R[$rt] = (R[$rs] < SignExt(imm))?32′h1 : 32′h0
SLTIU R[$rt] = (R[$rs] < SignExt(imm))?32′h1 : 32′h0(unsigned comparison)
ANDI R[$rt] = R[$rs] ∧ ZeroExt(imm)
ORI R[$rt] = R[$rs] ∨ ZeroExt(imm)
XORI R[$rt] = R[$rs]⊕ ZeroExt(imm)
LUI R[$rt] = {imm, 16′h0}
SLL R[$rd] = R[$rt] << shamt(logical)
SRL R[$rd] = R[$rt] >> shamt(logical)
SRA R[$rd] = R[$rt] >>> shamt(arithmetic)
SLLV R[$rd] = R[$rt] << R[$rs](logical)
SRLV R[$rd] = R[$rt] >> R[$rs](logical)
SRAV R[$rd] = R[$rt] >>> R[$rs](arithmetic)
ADDU R[$rd] = R[$rs] + R[$rt]
SUBU R[$rd] = R[$rs]−R[$rt]
AND R[$rd] = R[$rs] ∧R[$rt]
OR R[$rd] = R[$rs] ∨R[$rt]
XOR R[$rd] = R[$rs]⊕R[$rt]
NOR R[$rd] = R[$rs] ∧R[$rt]
SLT R[$rd] = (R[$rs] < R[$rt])?32′h1 : 32′h0
SLTU R[$rd] = (R[$rs] < R[$rt])?32′h1 : 32′h0(unsigned comparison)
J PC = {(PC)[31 : 28], JA, 2′b00}(delayed)
JAL R[31] = PC + 8;PC = {(PC)[31 : 28], JA, 2′b00}(delayed)
JR PC = R[$rs](delayed)
JALR R[$rd] = PC + 8;PC = R[$rs](delayed)
BEQ PC = PC + 4 + (R[$rs] == R[$rt])?(SignExt(imm) << 2) : 0(delayed)
BNE PC = PC + 4 + (R[$rs]! = R[$rt])?(SignExt(imm) << 2) : 0(delayed)
BLEZ PC = PC + 4 + (R[$rs] <= 0)?(SignExt(imm) << 2) : 0(delayed)
BGTZ PC = PC + 4 + (R[$rs] > 0)?(SignExt(imm) << 2) : 0(delayed)
BLTZ PC = PC + 4 + (R[$rs] < 0)?(SignExt(imm) << 2) : 0(delayed)
BGEZ PC = PC + 4 + (R[$rs] >= 0)?(SignExt(imm) << 2) : 0(delayed)

4 Pipeline Stages

As mentioned before, the processor will be required to have 3 pipeline stages. Although we have arbi-
trarily labeled the stages in lecture as I, X, and M (which stand for Instruction, Execute, and Memory,
respectively), it is really up to you what you will be doing in each stage. A simple diagram of what
we mean by 3 pipeline stages is shown in Figure 2. Note that a 3 stage pipeline is defined by 4
positive edges of the clock! In other words, the instruction is fetched from memory on the very 1st
positive edges, and is in the pipeline for three full cycles before the result is written back.

When designing your processor, try to keep track of your critical path. You will not be able to meet
the timing requirement if you try to do everything in 1 cycle! When considering how to break down your
pipeline, consider any potential data or control hazards that may arise and how you will resolve them.
You are not allowed to resolve hazards by stalling your processor!

Since you will be graded on the logic utilization of your processor, you will want to review the Virtex-5
datasheet to see how your code will map into actual hardware. You may also wish to familiarize yourself
with Synplify Pro to take advantage of the various optimization features and options that it offers.

3

Figure 2 The 3-stage pipeline

5 I/O Interface and Memory System

The processor will be using Memory-mapped I/O to talk to all other components in your project. Aside
from a global Reset signal, the memory ports will serve as the only way to transfer information to and
from the processor. The port specification for the processor is given in Table 3. This interface is identical
to the processor interface presented to you in Lab 5 (although a few wires were renamed for clarity).

Table 3 Port specification for the processor

Signal Width Dir Description
Clock 1 I The Clock input to the processor
Reset 1 I The global Reset signal
MemoryAddress 32 O The address corresponding to a memory or I/O transaction
MemoryReadData 32 I The data that was read from memory or an I/O device
MemoryRead 1 O Asserted by the processor on a memory or I/O read transaction
MemoryWriteData 32 O The data to be written to memory or an I/O device
MemoryWrite 1 O Asserted by the processor on a memory or I/O write transaction

Note: we may change the sizes of data and instruction memory in the coming weeks, so design your
memory module in in a way that permits the size to be changed.

I/O devices, as well as Instruction and Data memories, are memory-mapped onto the address space.
Table 4 shows how the address space is divided. Note that this is only a partial address map right now.
We will be adding more components later in the semester.

Keep in mind that the memory system is byte-addressed. Accesses to memory or I/O should also
be word-aligned. Also, note that several sections of the address space are write-only or read-only.
If the processor attempts to write to a read-only field, then the write has no effect. If the processor
attempts to read from a write-only field, then the resulting data could be anything.

Take special note that Instruction Memory is marked as write-only in the address space. This
just means that the processor cannot use its load/store memory ports to read from these addresses.
Note also that both Instruction and Data memories will implement synchronous read.
The instruction fetch stage of your processor pipeline, however, will need a dedicated read port to the
Instruction Memory in order to fetch one instruction per cycle. The instruction fetch stage
should be the only part of your processor that reads from the Instruction Memory.

4

Table 4 Map of the MIPS150 partial address space

Addresses Read/Write Purpose
0x00400000 - 0x00407ffc W Instruction Memory (User code)
0x7ffff000 - 0x7ffffffc R/W Data Memory (Stack)
0x10010000 - 0x10017ffc R/W Data Memory (Heap)
0xffff0000 - 0xffff0000 R Serial Interface (ControlInReg)
0xffff0004 - 0xffff0004 R Serial Interface (DataInReg)
0xffff0008 - 0xffff0008 R Serial Interface (ControlOutReg)
0xffff000c - 0xffff000c W Serial Interface (DataOutReg)

6 Restrictions

Although the design and implementation of the processor is meant to be open-ended, the following is
the small set of restrictions you are expected to obey.

1. Your design must be written in Verilog.

2. Your design must adhere to the standard MIPS ISA for the subset of instructions you are imple-
menting.

3. Your design must not exceed the amount of resources available on the Virtex-5 LX110T. For
example, your project should not be using more Block RAMs than the number available on the
board.

4. Clocks per Instruction (CPI) for your processor must be equal to 1. In other words, no stalling!.

5. Your processor must be able to run at 50-100 MHz (this number will be fixed in the next
2 weeks!) without any setup or hold time violations.

6. Your processor must have 3 pipeline stages. For information on what is considered a 3-stage
pipeline, refer back to Figure 2.

Rev. Name Date Description
I Chris Fletcher 4/7/2010 Added the stack to the memory map.

H Chris Fletcher 3/29/2010 Moved data memory (heap) to 0x10010000.

G Ilia Lebedev 3/2/2010 Added clarification on what “3 stage pipeline” mans. Clarified

that instruction and data memories read synchronously. Fixed

RTL bugs in the ISA table.

F Ilia Lebedev &

Chris Fletcher &

John Wawrzynek

2/27/2010 Adopted for Spring 2010.

A-E ... Spring 2009 Spring 2009 EECS150 Staff.

5

http://cwfletcher.net/
http://cwfletcher.net/
http://ilebedev.net/
http://ilebedev.net/
http://cwfletcher.net/
http://www.cs.berkeley.edu/~johnw/

	Time Table
	Motivation
	Instruction Set
	Pipeline Stages
	I/O Interface and Memory System
	Restrictions

