
Spring 2010 EECS150 - Lec28-wrapup Page

EECS150 - Digital Design
Lecture 28 - Course Wrapup

April 29, 2010
John Wawrzynek

1

Spring 2010 EECS150 – Lec28-wrapup Page

Why Study and Learn Digital Design?
• We expect that many of our graduates will eventually be

employed as designers.
– Digital design is not a spectator sport. The only way to learn it

and to appreciate the issues is to do it.
– To a large extent, it comes with practice/experience (this course is

just the beginning).
– Another way to get better is to study other designs. Not time to do

this during the semester, but a good practice for later.
• However, a significant percentage of our graduates will not

be digital designers. What’s in it for them?
– Better manager of designers, marketers, field engineers, etc.
– Better researcher/scientist/designer in related areas

• Software engineers, fabrication process development, etc.
– To become a better user of electronic systems.

2

Spring 2010 EECS150 – Lec28-wrapup Page

In What Context Will You be Designing?

• Electronic design is a critical tool for most areas of pure science:
– Astrophysics – special electronics used for processing radio antenna

signals.
– Genomics – special processing architectures for DNA string matching.
– In general - sensor processing, control, and number crunching. In some

fields, computation has replaced experimentation – particle physics, world
weather prediction (fluid dynamics).

• In computer engineering, prototypes often designed, implemented, and
studied to “prove out” an idea. Common within Universities and
industrial research labs. Lessons learned and proven ideas often
transferred to industry through licensing, technical communications, or
startup companies.
– RISC processors where first proved out at Berkeley and IBM Research

Engineers learn so that they can build.
Scientist build so that they can learn.

3

Spring 2010 EECS150 – Lec28-wrapup Page

Designs in Industry
• Of course, companies are the primary employer of

designers. Provide some useful products to society or
government and make a profit for the shareholders.

4

Spring 2010 EECS150 – Lec28-wrapup Page

The Big Ideas from EECS150

1. Modularity and Hierarchy is an
important way to describe and
think about digital systems.

2. Parallelism is a key property of
hardware systems and
distinguishes them from
software.

3. Clocking and the use of state
elements (latches, flip-flops, and
memories) control the flow of
data.

4. Cost/Performance/Power
tradeoffs are possible at all
levels of the system design.

5. Hardware Description
Languages (HDLs) and Logic
Synthesis are a central tool for
digital design.

6. Finite State Machines
abstraction gives us a way to
model any digital system –
however, usually only used for
controllers.

7. Arithmetic circuits are often
based on “long-hand” arithmetic
techniques.

8. FPGAs give us a convenient
and flexible implementation
technology.

5

Spring 2010 EECS150 – Lec28-wrapup Page

The Useful Skill from Class

Given an English language description for the function of a
digital system covering any of a wide variety of domains*:

You can organize and describe a digital system, and
 using Verilog and logic synthesis, generate a detailed

circuit at the “logic gate level”, and
 map to an FPGA, and
 debug it, and
 optimize for cost or performance or both.

We hope that after have taken this class that …

6

* Well, at least for processors.

Spring 2010 EECS150 – Lec28-wrapup Page

What We Didn’t Cover
• Design Verification and Testing

– Industrial designers spend more than half their time testing and
verifying correctness of their designs.

• Some of this covered in the lab. Didn’t cover rigorous testing procedures
and “formal verification”.

– Most industrial products are designed from the start for testability.
Important for design verification and later for manufacturing test.

– Built in self test (BIST), Automatic Test Vector Generation, Scan-chain
techniques.

• Other High-level Optimization Techniques
– Automatic Retiming

• Other High-level Architectures: video processing, network
routers, ...

• Power Aware Design Techniques and Tools

• DRAM design and interfacing
7

Spring 2010 EECS150 – Lec28-wrapup Page

Most Closely Related Courses
• CS152 Computer Architecture and Engineering

– Design and Analysis of Microprocessors
– Applies basic design concepts from EECS150

• EE141 Digital Integrated Circuits
– Transistor-level design of ICs
– Understand how our EECS150 circuits are mapped to silicon

• CS194-6 Digital Systems Project Laboratory
– More intensive design experience in the EECS150 style
– Not regularly offered (someday will be a regular course?)

• CS250 VLSI Systems Design
– Learn how to design cell-based ASICs
– Advanced-undergrad/grad course
– “New” format, now design-based

8

Spring 2010 EECS150 – Lec28-wrapup Page

Future Design Issues
• Automatic High-level synthesis and optimization (with

micro-architecture synthesis) and hardware/software co-
design.

• Current trend is towards “system on a chip” (SOC) design
methodology:
– Pre-designed subsystems (processor cores, bus controllers,

memory systems, network interfaces, etc.) connected with
standard on-chip interconnect or bus.

• Increasing NREs will favor post-fabrication customization.
• A number of alternatives to silicon VLSI have been

proposed, including techniques based on:
– molecular electronics, quantum mechanics, and biological

processes. “Nano-devices”
– How will these change the way we design systems?

9

Spring 2009 EECS150 lec01-intro Page

Course Grading & Final Exam

Final
25%

project
35%

HW/quiz
15%

labs
10%

• Exam held in scheduled final
exam slot: Monday May 10,
11:30-2:30.

• Room: 2 LeConte
• “Comprehensive” Final Exam:

covers material from the entire
semester with emphasis on
second half

• ~2/3 of final will cover new
material since Midterm exam -
Lecture 19 (Combinational Logic),
and on.

• ~1/3 of final will cover semester-
long topics.

10

Midterm
15%

Review session:
• Friday May 7th
• 5-...pm, 306 Soda

Spring 2010 EECS150 – Lec28-wrapup Page

Important Topics from Second Half
• Definitions of the three representations for combinational logic:

– truth tables, logic gate networks, algebraic equations

• Strengths, weaknesses, and uses for each CL representation.
• Conversion of simple logic functions among all CL

representations.
• Definition and axioms of Boolean algebra
• Laws (theorems) of Boolean algebra
• Proving theorems via axioms
• DeMorgan's law and relationship to NAND/NOR gates
• Forming SOP and POS canonical forms of Boolean expressions
• Using axioms and laws of Boolean algebra for simplification
• Using K-maps for deriving reduced POS and SOP forms (up to 6

variables).

11

Spring 2010 EECS150 – Lec28-wrapup Page

Important Topics from Second Half
• Exploiting function "don't care" values in logic simplication.
• Factoring and multi-level combinational logic.
• "Bubble pushing" and translating between AND/OR and NAND

and NORs.
• Synchronizer failure and design.
• Design and operation of finite state machines (FSM) as

synchronous logic circuits.
• "By hand" design procedure from state-transision-diagram (STD)

to FSM circuit implementation.
• Design procedure for STD to "one-hot" encoded FSM circuit.
• Moore versus Mealy machine STDs and implementations and

timing behavior.
• Moore versus Mealy in Verilog specifications.
•

12

Spring 2010 EECS150 – Lec28-wrapup Page

Important Topics from Second Half
• Counters in controller design.
• Binary up/down counter design.
• Carry-select adder design principle, cost/performance analysis,

optimization.
• Carry look-ahead adder design principle, cost/performance

analysis, optimization.
• Bit-serial adders design and operation.
• Virtex-5 adder carry-chain.
• Binary multiplication principle.
• Shift-and-add multiplier design and operation.
• Extending multiplication techniques for signed multiplication.
• Bit-serial multiplier structure and operation.
•

13

Spring 2010 EECS150 – Lec28-wrapup Page

Important Topics from Second Half
• Cost performance analysis of alternative multiplication schemes.
• Combinational (array) multiplier structure and operation.
• Carry-save addition technique and application to multiplier

design.
• Multiplication by a constant, including canonic signed digit

representation (CSD), and KCM factoring technique. Shifter
Circuits

• Operation and implementation of FIFOs.
• Using register transfer language descriptions to specify high-

level designs.
• Datapath and controller extraction from register transfer

language descriptions.
• Datapath/controller optimizations for improving performance and

cost.
• 14

Spring 2010 EECS150 – Lec28-wrapup Page

Important Topics from Second Half
• Using resource utilization charts for optimization, including

modulo scheduling technique.
• Design tradeoffs (optimization) through parallelism versus

hardware-multiplexing.
• Ideal versus actual pipelines. Limits on pipelining.
• Pipelining with dependencies.
• SIMD parallelism.
•

15

Spring 2010 EECS150 – Lec28-wrapup Page

The End.

• Special thanks to the Chris, Ilia, Brandon,
and Kyle.

• Good luck finishing up your project and on
the final.

• Thanks for a great semester!

16

