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Asynchronous Inputs to Synchronous Systems

• Many synchronous systems need to interface to 
asynchronous input signals:
– Consider a computer system running at some clock 

frequency, say 1GHz with:
• Interrupts from I/O devices, keystrokes, etc.
• Data transfers from devices with their own clocks

– Ethernet has its own 100MHz clock
– PCI bus transfers, 66MHz standard clock.

– These signals could have no known timing relationship with 
the system clock of the CPU.

– (On FPGAs we can use FIFOs - separate clocks for input and 
output - as the interface.  In general, this is overkill - and 
too expensive).

2



Spring 2010 EECS150 - Lec21-fsm Page 

“Synchronizer” Circuit
• For a single asynchronous input, we use a simple flip-flop to bring the 

external input signal into the timing domain of the system clock:

• The D flip-flop samples the asynchronous input at each cycle and produces 
a synchronous output that meets the setup time of the next stage.

3

Spring 2010 EECS150 - Lec21-fsm Page 

“Synchronizer” Circuit
• It is essential for asynchronous inputs to be synchronized at only one 

place.  

• Two flip-flops may not receive the clock and input signals at precisely the 
same time (clock and data skew). 

• When the asynchronous changes near the clock edge, one flip-flop may 
sample input as 1 and the other as 0.
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“Synchronizer” Circuit
• Single point of synchronization is even more important when input 

goes to a combinational logic block (ex. FSM)
• The CL block can accidentally hide the fact that the signal is 

synchronized at multiple points.
• The CL magnifies the chance of the multiple points of 

synchronization seeing different values.

• Sounds simple, right?
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Synchronizer Failure & Metastability
• We think of flip-flops having only two 

stable states - but all have a third 
metastable state halfway between 0 
and 1.

• When the setup and hold times of a 
flip-flop are not met, the flip-flop 
could be put into the metastable state. 

• Noise will be amplified and push the 
flip-flop one way or other.

• However, in theory, the time to 
transition to a legal state is 
unbounded.

• Does this really happen?
• The probability is low, but  the 

number of trials is high!
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Synchronizer Failure & Metastability
• If the system uses a synchronizer output while the output is still in 

the metastable state ⇒ synchronizer failure.
• Initial versions of several commercial ICs have suffered from 

metastability problems - effectively synchronization failure:
– AMD9513 system timing controller
– AMD9519 interrupt controller
– Zilog Z-80 Serial I/O interface
– Intel 8048 microprocessor
– AMD 29000 microprocessor

• To avoid synchronizer failure wait long enough before using a 
synchronizer’s output.  “Long enough”, according to Wakerly, is so 
that the mean time between synchronizer failures is several orders of 
magnitude longer than the designer’s expected length of employment!

• In practice all we can do is reduce the probability of failure to a 
vanishing small value.
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Reliable Synchronizer Design
• The probability that a flip-flop stays in the metastable state 

decreases exponentially with time.  
• Therefore, any scheme that delays using the signal can be used to 

decrease the probability of failure. 
• In practice, delaying the signal by a cycle is usually sufficient:

• If the clock period is greater than metastability resolution time 
plus FF2 setup time, FF2 gets a synchronized version of 
ASYNCIN.

• Multi-cycle synchronizers (using counters or more cascaded flip-
flops) are even better – but often overkill.
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Purely Asynchronous Circuits
• Many researchers (and a few industrial designers) have proposed 

a variety of circuit design methodologies that eliminate the need 
for a globally distributed clock.  

• They cite a variety of important potential advantages over 
synchronous systems.

• To date, these attempts have remained mainly in Universities.

• A few commercial asynchronous chips/systems have been build.

• Sometimes, asynchronous blocks sometimes appear inside 
otherwise synchronous systems.
– Asynchronous techniques have long been employed in DRAM and other 

memory chips for generation internal control without external clocks.  
(Precharge/sense-amplifier timing based on address line changes.
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Now on to FSMs
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Finite State Machines (FSMs)
• FSM circuits are a type of 

sequential circuit:
– output depends on present and 

past inputs
• effect of past inputs is 

represented by the current state

• Behavior is represented by 
State Transition Diagram:
– traverse one edge per clock 

cycle.
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FSM Implementation

• FFs form state register
• number of states ≤ 2number of flip-flops

• CL (combinational logic) calculates next state and output
• Remember:  The FSM follows exactly one edge per cycle.

So far we have learned how to implement in Verilog.  Now 
we learn how to design “by hand” to the gate level.
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Parity Checker Example
A string of bits has “even parity” if the number of 1’s in the string is even.
• Design a circuit that accepts a bit-serial stream of bits and outputs a 0 if 

the parity thus far is even and outputs a 1 if odd:
•

Next we take this example through the “formal design process”.  
But first, can you guess a circuit that performs this function?
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Formal Design Process 

“State Transition Diagram”
– circuit is in one of two “states”.
– transition on each cycle with 

each new input, over exactly one 
arc (edge).

– Output depends on which state 
the circuit is in.
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Formal Design Process
State Transition Table:

Invent a code to represent states:
Let 0 = EVEN state, 1 = ODD state

present                   next
state       OUT  IN   state

 EVEN       0     0    EVEN
 EVEN       0     1     ODD
 ODD         1     0     ODD
 ODD         1     1    EVEN

present state (ps)   OUT   IN   next state (ns)
            0                    0      0                0
            0                    0      1                1
            1                    1      0                1
            1                    1      1                0

Derive logic equations 
from table (how?):
OUT = PS
NS = PS xor IN
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Formal Design Process

• Circuit Diagram:

– XOR gate for ns calculation
– DFF to hold present state
– no logic needed for output in 

this example.

Logic equations from table:
OUT = PS
NS = PS xor IN

nsps
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Formal Design Process
Review of Design Steps:

 1. Specify circuit function (English)
 2. Draw state transition diagram
 3. Write down symbolic state transition table
 4. Write down encoded state transition table
 5. Derive logic equations
 6. Derive circuit diagram
  Register to hold state
  Combinational Logic for Next State and Outputs
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Combination Lock Example

• Used to allow entry to a locked room:
2-bit serial combination.  Example 01,11:
 1. Set switches to 01, press ENTER
 2. Set switches to 11, press ENTER
 3. OPEN is asserted (OPEN=1).
  If wrong code, ERROR is asserted (after second combo word entry).
  Press Reset at anytime to try again.
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Combinational Lock STD

Assume the ENTER 
button when pressed 
generates a pulse for 
only one clock cycle.
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Symbolic State Transition Table
RESET  ENTER  COM1  COM2  Preset State          Next State OPEN ERROR
0 0 * * START  START 0 0
0 1 0 * START  BAD1 0 0
0 1 1 * START  OK1 0 0
0 0 * * OK1  OK1 0 0
0 1 * 0 OK1  BAD2 0 0
0 1 * 1 OK1  OK2 0 0
0 * * * OK2  OK2 1 0
0 0 * * BAD1  BAD1 0 0
0 1 * * BAD1  BAD2 0 0
0 * * * BAD2  BAD2 0 1
1 * * * *  START 0 0

Decoder logic for checking
combination (01,11):

20



Spring 2010 EECS150 - Lec21-FSM Page 

Encoded ST Table
• Assign states:

START=000, OK1=001, OK2=011
BAD1=100, BAD2=101

• Omit reset.  Assume that primitive flip-flops has reset 
input.

• Rows not shown have don’t cares in output.  
Correspond to invalid PS values.

• What are the output functions for OPEN and ERROR?

NS2 NS1 NS0
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State Encoding

• In general:
     # of possible FSM state = 2# of FFs

  Example: 
   state1 = 01, state2 = 11, state3 = 10, state4 = 00

• However, often more than log2(# of states) FFs are 
used, to simplify logic at the cost of more FFs.

• Extreme example is one-hot state encoding.
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State Encoding
• One-hot encoding of states.
• One FF per state.

• Why one-hot encoding?
– Simple design procedure.

• Circuit matches state transition diagram (example next page).
– Often can lead to simpler and faster “next state” and output logic.

• Why not do this?
– Can be costly in terms of FFs for FSMs with large number of states.

• FPGAs are “FF rich”, therefore one-hot state machine encoding is 
often a good approach.  
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One-hot encoded FSM
• Even Parity Checker Circuit:

• In General: • FFs must be initialized for 
correct operation (only one 1)

Circuit generated 
through direct 
inspection of the STD.
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One-hot encoded combination lock

25

Spring 2010 EECS150 - Lec21-FSM Page 

FSM Implementation Notes
• General FSM form:

• All examples so far generate 
output based only on the present 
state:

• Commonly name Moore Machine
 (If output functions include both 

present state and input then called 
a Mealy Machine)
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Finite State Machines
• Example: Edge Detector
  Bit are received one at a time (one per cycle), 
  such as:   000111010  time

  
  Design a circuit that asserts
  its output for one cycle when 
  the input bit stream changes
  from 0 to 1.  
 
  Try two different solutions.

FSM

CLK

IN OUT
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State Transition Diagram Solution A

IN   PS    NS  OUT
 0    00     00    0
 1    00     01    0
 0    01     00    1
 1    01     11    1
 0    11     00    0
 1    11     11    0

ZERO

CHANGE

ONE
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Solution A, circuit derivation

IN   PS    NS  OUT
 0    00     00    0
 1    00     01    0
 0    01     00    1
 1    01     11    1
 0    11     00    0
 1    11     11    0

ZERO

CHANGE

ONE
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Solution B
Output depends not only on PS but also on input, IN

IN   PS   NS   OUT
 0     0      0       0
 0     1      0       0
 1     0      1       1
 1     1      1       0

Let ZERO=0,
        ONE=1

NS = IN, OUT = IN PS’

What’s the intuition about this solution?
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Edge detector timing diagrams

• Solution A: output follows the clock
• Solution B: output changes with input rising edge and is 

asynchronous wrt the clock.
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FSM Comparison
Solution A

Moore Machine
• output function only of PS
• maybe more states (why?)
• synchronous outputs

– no glitches
– one cycle “delay”
– full cycle of stable output

Solution B
Mealy Machine

• output function of both PS & input
• maybe fewer states
• asynchronous outputs

– if input glitches, so does output
– output immediately available
– output may not be stable long 

enough to be useful (below):

If output of Mealy FSM 
goes through combinational 
logic before being 
registered, the CL might 
delay the signal and it could 
be missed by the clock edge. 
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FSM Recap
Moore Machine Mealy Machine

Both machine types allow one-hot implementations.
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Final Notes on Moore versus Mealy
1. A given state machine could have both Moore and Mealy 

style outputs.  Nothing wrong with this, but you need to be 
aware of the timing differences between the two types.

2. The output timing behavior of the Moore machine can be 
achieved in a Mealy machine by “registering” the Mealy 
output values:
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General FSM Design Process with Verilog 
ImplementationDesign Steps:

 1. Specify circuit function (English)
 2. Draw state transition diagram
 3. Write down symbolic state transition table
 4. Assign encodings (bit patterns) to symbolic states
 5. Code as Verilog behavioral description

 Use parameters to represent encoded states.
 Use separate always blocks for register assignment and CL 

logic block.
 Use case for CL block.  Within each case section assign all 

outputs and next state value based on inputs.   Note:  For 
Moore style machine make outputs dependent only on state 
not dependent on inputs.  
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FSMs in Verilog

always @(posedge clk)  
 if (rst) ps <= ZERO;
 else ps <= ns;
always @(ps in)
    case (ps)
      ZERO: if (in) begin 
             out = 1’b1;
             ns = ONE;
           end
    else begin
      out = 1’b0;
      ns = ZERO;
    end
      ONE: if (in) begin
    out = 1’b0;
    ns = ONE;
   end
   else begin
     out = 1’b0;
     ns = ZERO;
   end
      default: begin 
       out = 1’bx; 
       ns = default; 
      end

always @(posedge clk)  
 if (rst) ps <= ZERO;
 else ps <= ns;
always @(ps in)
    case (ps)
      ZERO: begin
      out = 1’b0;
      if (in) ns = CHANGE;
                else ns = ZERO;
    end
      CHANGE: begin
       out = 1’b1;
       if (in) ns = ONE;
       else ns = ZERO;
      end
         ONE: begin
       out = 1’b0;
       if (in) ns = ONE;
       else ns = ZERO;
      default: begin 
       out = 1’bx; 
       ns = default; 
      end

Mealy Machine Moore Machine
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