
Spring 2010 EECS150 - Lec21-fsm Page

EECS150 - Digital Design
Lecture 21 - Metastability, Finite

State Machines Revisited

April 6, 2010
John Wawrzynek

1

Spring 2010 EECS150 - Lec21-fsm Page

Asynchronous Inputs to Synchronous Systems

• Many synchronous systems need to interface to
asynchronous input signals:
– Consider a computer system running at some clock

frequency, say 1GHz with:
• Interrupts from I/O devices, keystrokes, etc.
• Data transfers from devices with their own clocks

– Ethernet has its own 100MHz clock
– PCI bus transfers, 66MHz standard clock.

– These signals could have no known timing relationship with
the system clock of the CPU.

– (On FPGAs we can use FIFOs - separate clocks for input and
output - as the interface. In general, this is overkill - and
too expensive).

2

Spring 2010 EECS150 - Lec21-fsm Page

“Synchronizer” Circuit
• For a single asynchronous input, we use a simple flip-flop to bring the

external input signal into the timing domain of the system clock:

• The D flip-flop samples the asynchronous input at each cycle and produces
a synchronous output that meets the setup time of the next stage.

3

Spring 2010 EECS150 - Lec21-fsm Page

“Synchronizer” Circuit
• It is essential for asynchronous inputs to be synchronized at only one

place.

• Two flip-flops may not receive the clock and input signals at precisely the
same time (clock and data skew).

• When the asynchronous changes near the clock edge, one flip-flop may
sample input as 1 and the other as 0.

4

Spring 2010 EECS150 - Lec21-fsm Page

“Synchronizer” Circuit
• Single point of synchronization is even more important when input

goes to a combinational logic block (ex. FSM)
• The CL block can accidentally hide the fact that the signal is

synchronized at multiple points.
• The CL magnifies the chance of the multiple points of

synchronization seeing different values.

• Sounds simple, right?

5

Spring 2010 EECS150 - Lec21-fsm Page

Synchronizer Failure & Metastability
• We think of flip-flops having only two

stable states - but all have a third
metastable state halfway between 0
and 1.

• When the setup and hold times of a
flip-flop are not met, the flip-flop
could be put into the metastable state.

• Noise will be amplified and push the
flip-flop one way or other.

• However, in theory, the time to
transition to a legal state is
unbounded.

• Does this really happen?
• The probability is low, but the

number of trials is high!
6

Spring 2010 EECS150 - Lec21-fsm Page

Synchronizer Failure & Metastability
• If the system uses a synchronizer output while the output is still in

the metastable state ⇒ synchronizer failure.
• Initial versions of several commercial ICs have suffered from

metastability problems - effectively synchronization failure:
– AMD9513 system timing controller
– AMD9519 interrupt controller
– Zilog Z-80 Serial I/O interface
– Intel 8048 microprocessor
– AMD 29000 microprocessor

• To avoid synchronizer failure wait long enough before using a
synchronizer’s output. “Long enough”, according to Wakerly, is so
that the mean time between synchronizer failures is several orders of
magnitude longer than the designer’s expected length of employment!

• In practice all we can do is reduce the probability of failure to a
vanishing small value.

7

Spring 2010 EECS150 - Lec21-fsm Page

Reliable Synchronizer Design
• The probability that a flip-flop stays in the metastable state

decreases exponentially with time.
• Therefore, any scheme that delays using the signal can be used to

decrease the probability of failure.
• In practice, delaying the signal by a cycle is usually sufficient:

• If the clock period is greater than metastability resolution time
plus FF2 setup time, FF2 gets a synchronized version of
ASYNCIN.

• Multi-cycle synchronizers (using counters or more cascaded flip-
flops) are even better – but often overkill.

8

Spring 2010 EECS150 - Lec21-fsm Page

Purely Asynchronous Circuits
• Many researchers (and a few industrial designers) have proposed

a variety of circuit design methodologies that eliminate the need
for a globally distributed clock.

• They cite a variety of important potential advantages over
synchronous systems.

• To date, these attempts have remained mainly in Universities.

• A few commercial asynchronous chips/systems have been build.

• Sometimes, asynchronous blocks sometimes appear inside
otherwise synchronous systems.
– Asynchronous techniques have long been employed in DRAM and other

memory chips for generation internal control without external clocks.
(Precharge/sense-amplifier timing based on address line changes.

9

Spring 2010 EECS150 - Lec21-fsm Page

Now on to FSMs

10

Spring 2010 EECS150 - Lec21-FSM Page

Finite State Machines (FSMs)
• FSM circuits are a type of

sequential circuit:
– output depends on present and

past inputs
• effect of past inputs is

represented by the current state

• Behavior is represented by
State Transition Diagram:
– traverse one edge per clock

cycle.

11

Spring 2010 EECS150 - Lec21-FSM Page

FSM Implementation

• FFs form state register
• number of states ≤ 2number of flip-flops

• CL (combinational logic) calculates next state and output
• Remember: The FSM follows exactly one edge per cycle.

So far we have learned how to implement in Verilog. Now
we learn how to design “by hand” to the gate level.

12

Spring 2010 EECS150 - Lec21-FSM Page

Parity Checker Example
A string of bits has “even parity” if the number of 1’s in the string is even.
• Design a circuit that accepts a bit-serial stream of bits and outputs a 0 if

the parity thus far is even and outputs a 1 if odd:
•

Next we take this example through the “formal design process”.
But first, can you guess a circuit that performs this function?

13

Spring 2010 EECS150 - Lec21-FSM Page

Formal Design Process

“State Transition Diagram”
– circuit is in one of two “states”.
– transition on each cycle with

each new input, over exactly one
arc (edge).

– Output depends on which state
the circuit is in.

14

Spring 2010 EECS150 - Lec21-FSM Page

Formal Design Process
State Transition Table:

Invent a code to represent states:
Let 0 = EVEN state, 1 = ODD state

present next
state OUT IN state

 EVEN 0 0 EVEN
 EVEN 0 1 ODD
 ODD 1 0 ODD
 ODD 1 1 EVEN

present state (ps) OUT IN next state (ns)
 0 0 0 0
 0 0 1 1
 1 1 0 1
 1 1 1 0

Derive logic equations
from table (how?):
OUT = PS
NS = PS xor IN

15

Spring 2010 EECS150 - Lec21-FSM Page

Formal Design Process

• Circuit Diagram:

– XOR gate for ns calculation
– DFF to hold present state
– no logic needed for output in

this example.

Logic equations from table:
OUT = PS
NS = PS xor IN

nsps

16

Spring 2010 EECS150 - Lec21-FSM Page

Formal Design Process
Review of Design Steps:

 1. Specify circuit function (English)
 2. Draw state transition diagram
 3. Write down symbolic state transition table
 4. Write down encoded state transition table
 5. Derive logic equations
 6. Derive circuit diagram
 Register to hold state
 Combinational Logic for Next State and Outputs

17

Spring 2010 EECS150 - Lec21-FSM Page

Combination Lock Example

• Used to allow entry to a locked room:
2-bit serial combination. Example 01,11:
 1. Set switches to 01, press ENTER
 2. Set switches to 11, press ENTER
 3. OPEN is asserted (OPEN=1).
 If wrong code, ERROR is asserted (after second combo word entry).
 Press Reset at anytime to try again.

18

Spring 2010 EECS150 - Lec21-FSM Page

Combinational Lock STD

Assume the ENTER
button when pressed
generates a pulse for
only one clock cycle.

19

Spring 2010 EECS150 - Lec21-FSM Page

Symbolic State Transition Table
RESET ENTER COM1 COM2 Preset State Next State OPEN ERROR
0 0 * * START START 0 0
0 1 0 * START BAD1 0 0
0 1 1 * START OK1 0 0
0 0 * * OK1 OK1 0 0
0 1 * 0 OK1 BAD2 0 0
0 1 * 1 OK1 OK2 0 0
0 * * * OK2 OK2 1 0
0 0 * * BAD1 BAD1 0 0
0 1 * * BAD1 BAD2 0 0
0 * * * BAD2 BAD2 0 1
1 * * * * START 0 0

Decoder logic for checking
combination (01,11):

20

Spring 2010 EECS150 - Lec21-FSM Page

Encoded ST Table
• Assign states:

START=000, OK1=001, OK2=011
BAD1=100, BAD2=101

• Omit reset. Assume that primitive flip-flops has reset
input.

• Rows not shown have don’t cares in output.
Correspond to invalid PS values.

• What are the output functions for OPEN and ERROR?

NS2 NS1 NS0

21

Spring 2010 EECS150 - Lec21-FSM Page

State Encoding

• In general:
 # of possible FSM state = 2# of FFs

 Example:
 state1 = 01, state2 = 11, state3 = 10, state4 = 00

• However, often more than log2(# of states) FFs are
used, to simplify logic at the cost of more FFs.

• Extreme example is one-hot state encoding.

22

Spring 2010 EECS150 - Lec21-FSM Page

State Encoding
• One-hot encoding of states.
• One FF per state.

• Why one-hot encoding?
– Simple design procedure.

• Circuit matches state transition diagram (example next page).
– Often can lead to simpler and faster “next state” and output logic.

• Why not do this?
– Can be costly in terms of FFs for FSMs with large number of states.

• FPGAs are “FF rich”, therefore one-hot state machine encoding is
often a good approach.

23

Spring 2010 EECS150 - Lec21-FSM Page

One-hot encoded FSM
• Even Parity Checker Circuit:

• In General: • FFs must be initialized for
correct operation (only one 1)

Circuit generated
through direct
inspection of the STD.

24

Spring 2010 EECS150 - Lec21-FSM Page

One-hot encoded combination lock

25

Spring 2010 EECS150 - Lec21-FSM Page

FSM Implementation Notes
• General FSM form:

• All examples so far generate
output based only on the present
state:

• Commonly name Moore Machine
 (If output functions include both

present state and input then called
a Mealy Machine)

26

Spring 2010 EECS150 - Lec21-FSM Page

Finite State Machines
• Example: Edge Detector
 Bit are received one at a time (one per cycle),
 such as: 000111010 time

 Design a circuit that asserts
 its output for one cycle when
 the input bit stream changes
 from 0 to 1.

 Try two different solutions.

FSM

CLK

IN OUT

27

Spring 2010 EECS150 - Lec21-FSM Page

State Transition Diagram Solution A

IN PS NS OUT
 0 00 00 0
 1 00 01 0
 0 01 00 1
 1 01 11 1
 0 11 00 0
 1 11 11 0

ZERO

CHANGE

ONE

28

Spring 2010 EECS150 - Lec21-FSM Page

Solution A, circuit derivation

IN PS NS OUT
 0 00 00 0
 1 00 01 0
 0 01 00 1
 1 01 11 1
 0 11 00 0
 1 11 11 0

ZERO

CHANGE

ONE

29

Spring 2010 EECS150 - Lec21-FSM Page

Solution B
Output depends not only on PS but also on input, IN

IN PS NS OUT
 0 0 0 0
 0 1 0 0
 1 0 1 1
 1 1 1 0

Let ZERO=0,
 ONE=1

NS = IN, OUT = IN PS’

What’s the intuition about this solution?

30

Spring 2010 EECS150 - Lec21-FSM Page

Edge detector timing diagrams

• Solution A: output follows the clock
• Solution B: output changes with input rising edge and is

asynchronous wrt the clock.

31

Spring 2010 EECS150 - Lec21-FSM Page

FSM Comparison
Solution A

Moore Machine
• output function only of PS
• maybe more states (why?)
• synchronous outputs

– no glitches
– one cycle “delay”
– full cycle of stable output

Solution B
Mealy Machine

• output function of both PS & input
• maybe fewer states
• asynchronous outputs

– if input glitches, so does output
– output immediately available
– output may not be stable long

enough to be useful (below):

If output of Mealy FSM
goes through combinational
logic before being
registered, the CL might
delay the signal and it could
be missed by the clock edge.

32

Spring 2010 EECS150 - Lec21-FSM Page

FSM Recap
Moore Machine Mealy Machine

Both machine types allow one-hot implementations.

33

Spring 2010 EECS150 - Lec21-FSM Page

Final Notes on Moore versus Mealy
1. A given state machine could have both Moore and Mealy

style outputs. Nothing wrong with this, but you need to be
aware of the timing differences between the two types.

2. The output timing behavior of the Moore machine can be
achieved in a Mealy machine by “registering” the Mealy
output values:

34

Spring 2010 EECS150 - Lec21-FSM Page

General FSM Design Process with Verilog
ImplementationDesign Steps:

 1. Specify circuit function (English)
 2. Draw state transition diagram
 3. Write down symbolic state transition table
 4. Assign encodings (bit patterns) to symbolic states
 5. Code as Verilog behavioral description

 Use parameters to represent encoded states.
 Use separate always blocks for register assignment and CL

logic block.
 Use case for CL block. Within each case section assign all

outputs and next state value based on inputs. Note: For
Moore style machine make outputs dependent only on state
not dependent on inputs.

35

Spring 2010 EECS150 - Lec21-FSM Page

FSMs in Verilog

always @(posedge clk)
 if (rst) ps <= ZERO;
 else ps <= ns;
always @(ps in)
 case (ps)
 ZERO: if (in) begin
 out = 1’b1;
 ns = ONE;
 end
 else begin
 out = 1’b0;
 ns = ZERO;
 end
 ONE: if (in) begin
 out = 1’b0;
 ns = ONE;
 end
 else begin
 out = 1’b0;
 ns = ZERO;
 end
 default: begin
 out = 1’bx;
 ns = default;
 end

always @(posedge clk)
 if (rst) ps <= ZERO;
 else ps <= ns;
always @(ps in)
 case (ps)
 ZERO: begin
 out = 1’b0;
 if (in) ns = CHANGE;
 else ns = ZERO;
 end
 CHANGE: begin
 out = 1’b1;
 if (in) ns = ONE;
 else ns = ZERO;
 end
 ONE: begin
 out = 1’b0;
 if (in) ns = ONE;
 else ns = ZERO;
 default: begin
 out = 1’bx;
 ns = default;
 end

Mealy Machine Moore Machine

36

