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EECS150 - Digital Design
Lecture 20 - Combinational Logic 

Circuits (Part 2)

April 1, 2010
John Wawrzynek
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• Review of three representations for 
combinational logic:
– truth tables, 
– graphical (logic gates), and 
– algebraic equations

• Relationship among the three
• Adder example
• Laws of Boolean Algebra
• Canonical Forms
• Boolean Simplification
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Outline

2



Spring 2010 EECS150 - Lec20-cl2 Page 

Relationship Among Representations
* Theorem: Any Boolean function that can be expressed as a truth table can be 

written as an expression in Boolean Algebra using AND, OR, NOT.

How do we convert from one to the other?
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Outline for remaining CL Topics

• K-map method of two-level logic simplification
• Multi-level Logic
• NAND/NOR networks
• EXOR revisited
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Algorithmic Two-level Logic Simplication
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ab f
00 0
01 0
10 1
11 1

ab g
00 1
01 0
10 1
11 0

Key tool: The Uniting Theorem:
xy’ + xy = x (y’ + y) = x (1) = x

f = ab’ + ab = a(b’+b) = a

g = a’b’+ab’ = (a’+a)b’ =b’

b values change within the on-set rows
a values don’t change
b is eliminated, a remains

b values stay the same
a values changes
b’ remains, a is eliminated
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Boolean Cubes
Visual technique for identifying when the Uniting Theorem can be applied 

• Sub-cubes of on-nodes can be used for simplification.
– On-set: filled in nodes, off-set: empty nodes

Alternative way to represent 
boolean functions.
Filled in nodes represent a 1 
in the function.
Moving between adjacent 
nodes represents changing 
only one input.
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3-variable cube example
FA carry out:

a b c  cout
0 0 0  0
0 0 1  0
0 1 0  0
0 1 1  1
1 0 0  0
1 0 1  1
1 1 0  1
1 1 1  1 ab’c’ + ab’c + abc’ + abc

  ac’ + ac + ab = a + ab = a

• Both b & c change, a is 
asserted & remains constant.

What about larger sub-cubes?
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Karnaugh Map Method
• K-map is an alternative method of representing 

the TT and to help visual the adjacencies.
Note: “gray code” labeling.
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Karnaugh Map Method

• Adjacent groups of 1’s represent product terms 
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K-map Simplification
1. Draw K-map of the appropriate number of variables 

(between 2 and 6)
2. Fill in map with function values from truth table.
3. Form groups of 1’s.

 Dimensions of groups must be even powers of two (1x1, 1x2, 
1x4, …, 2x2, 2x4, …)

 Form as large as possible groups and as few groups as possible.
 Groups can overlap (this helps make larger groups)
 Remember K-map is periodical in all dimensions (groups can 

cross over edges of map and continue on other side)
4. For each group write a product term. 

 the term includes the “constant” variables (use the 
uncomplemented variable for a constant 1 and complemented 
variable for constant 0)

5. Form Boolean expression as sum-of-products. 10
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K-maps (cont.)
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Product-of-Sums Version
1. Form groups of 0’s instead of 1’s.
2. For each group write a sum term. 

 the term includes the “constant” variables (use the 
uncomplemented variable for a constant 0 and 
complemented variable for constant 1)

3. Form Boolean expression as product-of-sums.
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BCD incrementer example

a b c d   w x y z
0 0 0 0   0 0 0 1
0 0 0 1   0 0 1 0
0 0 1 0   0 0 1 1
0 0 1 1   0 1 0 0
0 1 0 0   0 1 0 1
0 1 0 1   0 1 1 0
0 1 1 0   0 1 1 1
0 1 1 1   1 0 0 0
1 0 0 0   1 0 0 1
1 0 0 1   0 0 0 0
1 0 1 0   -  -  -  -
1 0 1 1   -  -  -  -
1 1 0 0   -  -  -  -
1 1 0 1   -  -  -  -
1 1 1 0   -  -  -  -
1 1 1 1   -  -  -  -
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Binary Coded Decimal

1
0

2
3
4
5
6
7
8
9

+1

4

4

{a,b,c,d}

{w,x,y,z}
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BCD Incrementer Example

• Note one map for each output variable.
• Function includes “don’t cares” (shown as “-” in 

the table).
– These correspond to places in the function where we 

don’t care about its value, because we don’t expect 
some particular input patterns.

–  We are free to assign either 0 or 1 to each don’t care 
in the function, as a means to increase group sizes.

• In general, you might choose to write product-of-
sums or sum-of-products according to which one 
leads to a simpler expression.
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BCD incrementer example

w =  

x =

y = 

z = 

00 01 11 10 00 01 11 10

00 01 11 1000 01 11 10
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BCD incrementer example

w =  

x =

y = 

z = 

00 01 11 10 00 01 11 10

00 01 11 1000 01 11 10
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Higher Dimensional K-maps
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Multi-level Combinational Logic
 Example: reduced sum-of-products form
 x = adf + aef + bdf + bef + cdf + cef + g
 Implementation in 2-levels with gates:

cost: 1 7-input OR, 6 3-input AND 
   => 50 transistors
delay: 3-input OR gate delay + 7-input AND gate delay

 Factored form:
 x = (a + b +c)(d + e)f + g

cost: 1 3-input OR, 2 2-input OR, 1 3-input AND
      => 20 transistors
delay: 3-input OR + 3-input AND + 2-input OR 

Which is faster?
In general: Using multiple levels (more than 2) will reduce the cost.  Sometimes also 

delay.      Sometimes a tradeoff between cost and delay.

Footnote: NAND would be used 
in place of all ANDs and ORs.
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Multi-level Combinational Logic

Another Example:  F = abc + abd +a’c’d’ + b’c’d’  
     let x = ab  y = c+d
       f = xy + x’y’

No convenient hand methods exist for multi-level logic simplification:
a) CAD Tools use sophisticated algorithms and heuristics
b) Humans and tools often exploit some special structure (example adder)

Are these optimizations still relevant for LUT implementations?
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Incorporates fanout.
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NAND-NAND & NOR-NOR Networks
DeMorgan’s Law Review:
  (a + b)’ = a’ b’        (a b)’ = a’ + b’
   a + b   = (a’ b’)’      (a b)  = (a’ + b’)’

push bubbles or introduce in pairs or remove pairs:         
(x’)’ = x.
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NAND-NAND & NOR-NOR Networks

• Mapping from AND/OR to NAND/NAND
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NAND-NAND & NOR-NOR Networks
• Mapping AND/OR to NOR/NOR

• OR/AND to NAND/NAND
 (by symmetry with above)

• Mapping OR/AND to NOR/NOR
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Multi-level Networks
Convert to NANDs:
F = a(b + cd) + bc’

(note fanout)
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EXOR Function
Parity, addition mod 2

x ⊕ y = x’y + xy’
 x y  xor  xnor
 0 0    0    1    

 0 1    1     0  
 1 0    1     0

 1 1    0     1      

Another approach:
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