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EECS150 - Digital Design
Lecture 20 - Combinational Logic 

Circuits (Part 2)

April 1, 2010
John Wawrzynek

1

• Review of three representations for 
combinational logic:
– truth tables, 
– graphical (logic gates), and 
– algebraic equations

• Relationship among the three
• Adder example
• Laws of Boolean Algebra
• Canonical Forms
• Boolean Simplification
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Outline
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Relationship Among Representations
* Theorem: Any Boolean function that can be expressed as a truth table can be 

written as an expression in Boolean Algebra using AND, OR, NOT.

How do we convert from one to the other?
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Outline for remaining CL Topics

• K-map method of two-level logic simplification
• Multi-level Logic
• NAND/NOR networks
• EXOR revisited
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Algorithmic Two-level Logic Simplication
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ab f
00 0
01 0
10 1
11 1

ab g
00 1
01 0
10 1
11 0

Key tool: The Uniting Theorem:
xy’ + xy = x (y’ + y) = x (1) = x

f = ab’ + ab = a(b’+b) = a

g = a’b’+ab’ = (a’+a)b’ =b’

b values change within the on-set rows
a values don’t change
b is eliminated, a remains

b values stay the same
a values changes
b’ remains, a is eliminated
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Boolean Cubes
Visual technique for identifying when the Uniting Theorem can be applied 

• Sub-cubes of on-nodes can be used for simplification.
– On-set: filled in nodes, off-set: empty nodes

Alternative way to represent 
boolean functions.
Filled in nodes represent a 1 
in the function.
Moving between adjacent 
nodes represents changing 
only one input.
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3-variable cube example
FA carry out:

a b c  cout
0 0 0  0
0 0 1  0
0 1 0  0
0 1 1  1
1 0 0  0
1 0 1  1
1 1 0  1
1 1 1  1 ab’c’ + ab’c + abc’ + abc

  ac’ + ac + ab = a + ab = a

• Both b & c change, a is 
asserted & remains constant.

What about larger sub-cubes?
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Karnaugh Map Method
• K-map is an alternative method of representing 

the TT and to help visual the adjacencies.
Note: “gray code” labeling.
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Karnaugh Map Method

• Adjacent groups of 1’s represent product terms 
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K-map Simplification
1. Draw K-map of the appropriate number of variables 

(between 2 and 6)
2. Fill in map with function values from truth table.
3. Form groups of 1’s.

 Dimensions of groups must be even powers of two (1x1, 1x2, 
1x4, …, 2x2, 2x4, …)

 Form as large as possible groups and as few groups as possible.
 Groups can overlap (this helps make larger groups)
 Remember K-map is periodical in all dimensions (groups can 

cross over edges of map and continue on other side)
4. For each group write a product term. 

 the term includes the “constant” variables (use the 
uncomplemented variable for a constant 1 and complemented 
variable for constant 0)

5. Form Boolean expression as sum-of-products. 10
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K-maps (cont.)
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Product-of-Sums Version
1. Form groups of 0’s instead of 1’s.
2. For each group write a sum term. 

 the term includes the “constant” variables (use the 
uncomplemented variable for a constant 0 and 
complemented variable for constant 1)

3. Form Boolean expression as product-of-sums.
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BCD incrementer example

a b c d   w x y z
0 0 0 0   0 0 0 1
0 0 0 1   0 0 1 0
0 0 1 0   0 0 1 1
0 0 1 1   0 1 0 0
0 1 0 0   0 1 0 1
0 1 0 1   0 1 1 0
0 1 1 0   0 1 1 1
0 1 1 1   1 0 0 0
1 0 0 0   1 0 0 1
1 0 0 1   0 0 0 0
1 0 1 0   -  -  -  -
1 0 1 1   -  -  -  -
1 1 0 0   -  -  -  -
1 1 0 1   -  -  -  -
1 1 1 0   -  -  -  -
1 1 1 1   -  -  -  -
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Binary Coded Decimal

1
0

2
3
4
5
6
7
8
9

+1

4

4

{a,b,c,d}

{w,x,y,z}
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BCD Incrementer Example

• Note one map for each output variable.
• Function includes “don’t cares” (shown as “-” in 

the table).
– These correspond to places in the function where we 

don’t care about its value, because we don’t expect 
some particular input patterns.

–  We are free to assign either 0 or 1 to each don’t care 
in the function, as a means to increase group sizes.

• In general, you might choose to write product-of-
sums or sum-of-products according to which one 
leads to a simpler expression.
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BCD incrementer example

w =  

x =

y = 

z = 

00 01 11 10 00 01 11 10

00 01 11 1000 01 11 10
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BCD incrementer example

w =  

x =

y = 

z = 

00 01 11 10 00 01 11 10

00 01 11 1000 01 11 10
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Higher Dimensional K-maps
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Multi-level Combinational Logic
 Example: reduced sum-of-products form
 x = adf + aef + bdf + bef + cdf + cef + g
 Implementation in 2-levels with gates:

cost: 1 7-input OR, 6 3-input AND 
   => 50 transistors
delay: 3-input OR gate delay + 7-input AND gate delay

 Factored form:
 x = (a + b +c)(d + e)f + g

cost: 1 3-input OR, 2 2-input OR, 1 3-input AND
      => 20 transistors
delay: 3-input OR + 3-input AND + 2-input OR 

Which is faster?
In general: Using multiple levels (more than 2) will reduce the cost.  Sometimes also 

delay.      Sometimes a tradeoff between cost and delay.

Footnote: NAND would be used 
in place of all ANDs and ORs.
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Multi-level Combinational Logic

Another Example:  F = abc + abd +a’c’d’ + b’c’d’  
     let x = ab  y = c+d
       f = xy + x’y’

No convenient hand methods exist for multi-level logic simplification:
a) CAD Tools use sophisticated algorithms and heuristics
b) Humans and tools often exploit some special structure (example adder)

Are these optimizations still relevant for LUT implementations?
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Incorporates fanout.
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NAND-NAND & NOR-NOR Networks
DeMorgan’s Law Review:
  (a + b)’ = a’ b’        (a b)’ = a’ + b’
   a + b   = (a’ b’)’      (a b)  = (a’ + b’)’

push bubbles or introduce in pairs or remove pairs:         
(x’)’ = x.
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NAND-NAND & NOR-NOR Networks

• Mapping from AND/OR to NAND/NAND

21
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NAND-NAND & NOR-NOR Networks
• Mapping AND/OR to NOR/NOR

• OR/AND to NAND/NAND
 (by symmetry with above)

• Mapping OR/AND to NOR/NOR
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Multi-level Networks
Convert to NANDs:
F = a(b + cd) + bc’

(note fanout)
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EXOR Function
Parity, addition mod 2

x ⊕ y = x’y + xy’
 x y  xor  xnor
 0 0    0    1    

 0 1    1     0  
 1 0    1     0

 1 1    0     1      

Another approach:
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