<u>EECS150 - Digital Design</u> <u>Lecture 20 - Combinational Logic</u> <u>Circuits (Part 2)</u>

April 1, 2010 John Wawrzynek

Spring 2010

EECS150 - Lec20-cl2

<u>Outline</u>

- Review of three representations for combinational logic:
 - truth tables,
 - graphical (logic gates), and
 - algebraic equations
- Relationship among the three
- Adder example
- Laws of Boolean Algebra
- Canonical Forms
- Boolean Simplification

Spring 2010

EECS150 - Lec20-cl2

Page 1

Relationship Among Representations

* Theorem: Any Boolean function that can be expressed as a truth table can be written as an expression in Boolean Algebra using AND, OR, NOT.

How do we convert from one to the other?

```
Spring 2010
```

```
EECS150 - Lec20-cl2
```

Page 3

Outline for remaining CL Topics

- K-map method of two-level logic simplification
- Multi-level Logic
- NAND/NOR networks
- EXOR revisited

Algorithmic Two-level Logic Simplication

Key tool: The Uniting Theorem: xy' + xy = x(y' + y) = x(1) = xf = ab' + ab = a(b'+b) = aab|f 00 0 b values change within the on-set rows 01 0 a values don't change 10 1 b is eliminated, a remains 1 11 q = a'b'+ab' = (a'+a)b' = b'ab|g 00 1 b values stay the same 01 0 a values changes 10 1 b' remains, a is eliminated 11 0 Page 5

Spring 2010

EECS150 - Lec20-cl2

Boolean Cubes

Visual technique for identifying when the Uniting Theorem can be applied

- Sub-cubes of on-nodes can be used for simplification. ٠
 - On-set: filled in nodes, off-set: empty nodes

3-variable cube example

Karnaugh Map Method

• K-map is an alternative method of representing the TT and to help visual the adjacencies.

· Adjacent groups of 1's represent product terms

Spring 2010

EECS150 - Lec20-cl2

Page 9

K-map Simplification

- 1. Draw K-map of the appropriate number of variables (between 2 and 6)
- 2. Fill in map with function values from truth table.
- 3. Form groups of 1's.
 - ✓ Dimensions of groups must be even powers of two (1x1, 1x2, 1x4, ..., 2x2, 2x4, ...)
 - ✓ Form as large as possible groups and as few groups as possible.
 - ✓ Groups can overlap (this helps make larger groups)
 - ✓ Remember K-map is periodical in all dimensions (groups can cross over edges of map and continue on other side)
- 4. For each group write a product term.
 - the term includes the "constant" variables (use the uncomplemented variable for a constant 1 and complemented variable for constant 0)
- 5. Form Boolean expression as sum-of-products.

K-maps (cont.)

Product-of-Sums Version

- 1. Form groups of O's instead of 1's.
- 2. For each group write a sum term.
 - the term includes the "constant" variables (use the uncomplemented variable for a constant 0 and complemented variable for constant 1)
- 3. Form Boolean expression as product-of-sums.

	୍ଘଧ	,				
cd	\backslash	00	01	11	10	
	00	1(0	0	1	
	01	9	1	0	đ	
	11	1	1	1	1	
	10	1	1	1	1	
	01 11 10) 1 1	0 1 1 1	0 1 1	1 1	

$$f = (b' + c + d)(a' + c + d')(b + c + d')$$

BCD incrementer example

Binary Coded Decimal

0123456789	abcd 0000 0001 0010 0101 0100 0111 1000 1011 1000 1011 1100 1101 1101	w x y z 0 0 0 1 0 0 1 0 0 0 1 1 0 1 0 0 0 1 0 1 0 1 0 1 0 1 1 1 1 0 0 0 1 0 0 1 0 0 0 0 	
	1111		

Spring 2010

EECS150 - Lec20-cl2

Page 13

BCD Incrementer Example

- Note one map for each output variable.
- Function includes "don't cares" (shown as "-" in the table).
 - These correspond to places in the function where we don't care about its value, because we don't expect some particular input patterns.
 - We are free to assign either 0 or 1 to each don't care in the function, as a means to increase group sizes.
- In general, you might choose to write product-ofsums or sum-of-products according to which one leads to a simpler expression.

BCD incrementer example


```
Spring 2010
```

EECS150 - Lec20-cl2

Page 15

BCD incrementer example

W	Х	
ab	ab	
00 0 0 - 1	00 0 1 - 0	w =
01 0 0 - 0	01 0 1 - 0	
11 0 1	11 1 0	v –
10 0 0	10 0 1	x –
_{ab} y	ah Z	y =
y ∞d ∖ 00 01 11 10	z ∞d ∖ 00 01 11 10	y =
y cd 00 01 11 10 00 0 0 - 0	z cd 00 01 11 10 00 1 1 - 1	y =
y cd 00 01 11 10 00 0 - 0 01 1 1 - 0	Z cd 00 01 11 10 00 1 1 - 1 01 0 0 - 0	y = z =
y cd 00 01 11 10 00 0 - 0 01 1 1 - 0 11 0 0	Z ab Cd 00 01 11 10 00 1 1 - 1 01 0 0 - 0 11 0 0	y = z =
y cd 00 01 11 10 00 0 - 0 01 1 1 - 0 11 0 0 10 1 1	$ \begin{array}{c} $	y = z =

EECS150 - Lec20-cl2

Higher Dimensional K-maps

Spring 2010

EECS150 - Lec20-cl2

Page 17

Multi-level Combinational Logic

in place of all ANDs and ORs.

Which is faster?

In general: Using multiple levels (more than 2) will reduce the cost. Sometimes also delay. Sometimes a tradeoff between cost and delay.

Spring 2010

Multi-level Combinational Logic

No convenient hand methods exist for multi-level logic simplification:

- a) CAD Tools use sophisticated algorithms and heuristics
- b) Humans and tools often exploit some special structure (example adder)

Are these optimizations still relevant for LUT implementations?

Spring 2010

EECS150 - Lec20-cl2

Page 19

NAND-NAND & NOR-NOR Networks

DeMorgan's Law Review:

push bubbles or introduce in pairs or remove pairs: (x')' = x.

NAND-NAND & NOR-NOR Networks

Mapping from AND/OR to NAND/NAND

Spring 2010

EECS150 - Lec20-cl2

Page 21

NAND-NAND & NOR-NOR Networks

٠

• Mapping AND/OR to NOR/NOR

Mapping OR/AND to NOR/NOR

 OR/AND to NAND/NAND (by symmetry with above)

Multi-level Networks

Convert to NANDs:

F = a(b + cd) + bc'

(note fanout)

Spring 2010

EECS150 - Lec20-cl2

Page 23

Spring 2010

EECS150 - Lec20-cl2