
Spring 2010 EECS150 - Lec20-cl2 Page

EECS150 - Digital Design
Lecture 20 - Combinational Logic

Circuits (Part 2)

April 1, 2010
John Wawrzynek

1

• Review of three representations for
combinational logic:
– truth tables,
– graphical (logic gates), and
– algebraic equations

• Relationship among the three
• Adder example
• Laws of Boolean Algebra
• Canonical Forms
• Boolean Simplification

Spring 2010 EECS150 - Lec20-cl2 Page

Outline

2

Spring 2010 EECS150 - Lec20-cl2 Page

Relationship Among Representations
* Theorem: Any Boolean function that can be expressed as a truth table can be

written as an expression in Boolean Algebra using AND, OR, NOT.

How do we convert from one to the other?

3

Spring 2010 EECS150 - Lec20-cl2 Page

Outline for remaining CL Topics

• K-map method of two-level logic simplification
• Multi-level Logic
• NAND/NOR networks
• EXOR revisited

4

Spring 2010 EECS150 - Lec20-cl2 Page

Algorithmic Two-level Logic Simplication

5

ab f
00 0
01 0
10 1
11 1

ab g
00 1
01 0
10 1
11 0

Key tool: The Uniting Theorem:
xy’ + xy = x (y’ + y) = x (1) = x

f = ab’ + ab = a(b’+b) = a

g = a’b’+ab’ = (a’+a)b’ =b’

b values change within the on-set rows
a values don’t change
b is eliminated, a remains

b values stay the same
a values changes
b’ remains, a is eliminated

Spring 2010 EECS150 - Lec20-cl2 Page

Boolean Cubes
Visual technique for identifying when the Uniting Theorem can be applied

• Sub-cubes of on-nodes can be used for simplification.
– On-set: filled in nodes, off-set: empty nodes

Alternative way to represent
boolean functions.
Filled in nodes represent a 1
in the function.
Moving between adjacent
nodes represents changing
only one input.

6

Spring 2010 EECS150 - Lec20-cl2 Page

3-variable cube example
FA carry out:

a b c cout
0 0 0 0
0 0 1 0
0 1 0 0
0 1 1 1
1 0 0 0
1 0 1 1
1 1 0 1
1 1 1 1 ab’c’ + ab’c + abc’ + abc

 ac’ + ac + ab = a + ab = a

• Both b & c change, a is
asserted & remains constant.

What about larger sub-cubes?

7

Spring 2010 EECS150 - Lec20-cl2 Page

Karnaugh Map Method
• K-map is an alternative method of representing

the TT and to help visual the adjacencies.
Note: “gray code” labeling.

8

Spring 2010 EECS150 - Lec20-cl2 Page

Karnaugh Map Method

• Adjacent groups of 1’s represent product terms

9

Spring 2010 EECS150 - Lec20-cl2 Page

K-map Simplification
1. Draw K-map of the appropriate number of variables

(between 2 and 6)
2. Fill in map with function values from truth table.
3. Form groups of 1’s.

 Dimensions of groups must be even powers of two (1x1, 1x2,
1x4, …, 2x2, 2x4, …)

 Form as large as possible groups and as few groups as possible.
 Groups can overlap (this helps make larger groups)
 Remember K-map is periodical in all dimensions (groups can

cross over edges of map and continue on other side)
4. For each group write a product term.

 the term includes the “constant” variables (use the
uncomplemented variable for a constant 1 and complemented
variable for constant 0)

5. Form Boolean expression as sum-of-products. 10

Spring 2010 EECS150 - Lec20-cl2 Page

K-maps (cont.)

11

Spring 2010 EECS150 - Lec20-cl2 Page

Product-of-Sums Version
1. Form groups of 0’s instead of 1’s.
2. For each group write a sum term.

 the term includes the “constant” variables (use the
uncomplemented variable for a constant 0 and
complemented variable for constant 1)

3. Form Boolean expression as product-of-sums.

12

Spring 2010 EECS150 - Lec20-cl2 Page

BCD incrementer example

a b c d w x y z
0 0 0 0 0 0 0 1
0 0 0 1 0 0 1 0
0 0 1 0 0 0 1 1
0 0 1 1 0 1 0 0
0 1 0 0 0 1 0 1
0 1 0 1 0 1 1 0
0 1 1 0 0 1 1 1
0 1 1 1 1 0 0 0
1 0 0 0 1 0 0 1
1 0 0 1 0 0 0 0
1 0 1 0 - - - -
1 0 1 1 - - - -
1 1 0 0 - - - -
1 1 0 1 - - - -
1 1 1 0 - - - -
1 1 1 1 - - - -

13

Binary Coded Decimal

1
0

2
3
4
5
6
7
8
9

+1

4

4

{a,b,c,d}

{w,x,y,z}

Spring 2010 EECS150 - Lec20-cl2 Page

BCD Incrementer Example

• Note one map for each output variable.
• Function includes “don’t cares” (shown as “-” in

the table).
– These correspond to places in the function where we

don’t care about its value, because we don’t expect
some particular input patterns.

– We are free to assign either 0 or 1 to each don’t care
in the function, as a means to increase group sizes.

• In general, you might choose to write product-of-
sums or sum-of-products according to which one
leads to a simpler expression.

14

Spring 2010 EECS150 - Lec20-cl2 Page

BCD incrementer example

w =

x =

y =

z =

00 01 11 10 00 01 11 10

00 01 11 1000 01 11 10

15

Spring 2010 EECS150 - Lec20-cl2 Page

BCD incrementer example

w =

x =

y =

z =

00 01 11 10 00 01 11 10

00 01 11 1000 01 11 10

16

Spring 2010 EECS150 - Lec20-cl2 Page

Higher Dimensional K-maps

17

Spring 2010 EECS150 - Lec20-cl2 Page

Multi-level Combinational Logic
 Example: reduced sum-of-products form
 x = adf + aef + bdf + bef + cdf + cef + g
 Implementation in 2-levels with gates:

cost: 1 7-input OR, 6 3-input AND
 => 50 transistors
delay: 3-input OR gate delay + 7-input AND gate delay

 Factored form:
 x = (a + b +c)(d + e)f + g

cost: 1 3-input OR, 2 2-input OR, 1 3-input AND
 => 20 transistors
delay: 3-input OR + 3-input AND + 2-input OR

Which is faster?
In general: Using multiple levels (more than 2) will reduce the cost. Sometimes also

delay. Sometimes a tradeoff between cost and delay.

Footnote: NAND would be used
in place of all ANDs and ORs.

18

Spring 2010 EECS150 - Lec20-cl2 Page

Multi-level Combinational Logic

Another Example: F = abc + abd +a’c’d’ + b’c’d’
 let x = ab y = c+d
 f = xy + x’y’

No convenient hand methods exist for multi-level logic simplification:
a) CAD Tools use sophisticated algorithms and heuristics
b) Humans and tools often exploit some special structure (example adder)

Are these optimizations still relevant for LUT implementations?

19

Incorporates fanout.

Spring 2010 EECS150 - Lec20-cl2 Page

NAND-NAND & NOR-NOR Networks
DeMorgan’s Law Review:
 (a + b)’ = a’ b’ (a b)’ = a’ + b’
 a + b = (a’ b’)’ (a b) = (a’ + b’)’

push bubbles or introduce in pairs or remove pairs:
(x’)’ = x.

20

Spring 2010 EECS150 - Lec20-cl2 Page

NAND-NAND & NOR-NOR Networks

• Mapping from AND/OR to NAND/NAND

21

Spring 2010 EECS150 - Lec20-cl2 Page

NAND-NAND & NOR-NOR Networks
• Mapping AND/OR to NOR/NOR

• OR/AND to NAND/NAND
 (by symmetry with above)

• Mapping OR/AND to NOR/NOR

22

Spring 2010 EECS150 - Lec20-cl2 Page

Multi-level Networks
Convert to NANDs:
F = a(b + cd) + bc’

(note fanout)

23

Spring 2010 EECS150 - Lec20-cl2 Page

EXOR Function
Parity, addition mod 2

x ⊕ y = x’y + xy’
 x y xor xnor
 0 0 0 1

 0 1 1 0
 1 0 1 0

 1 1 0 1

Another approach:

24

