EECS150 - Digital Design
 Lecture 20-Combinational Logic
 Circuits (Part 2)

April 1, 2010
John Wawrzynek

Outline

- Review of three representations for combinational logic:
- truth tables,
- graphical (logic gates), and
- algebraic equations
- Relationship among the three
- Adder example
- Laws of Boolean Algebra
- Canonical Forms
- Boolean Simplification

Relationship Among Representations

* Theorem: Any Boolean function that can be expressed as a truth table can be written as an expression in Boolean Algebra using AND, OR, NOT.

How do we convert from one to the other?

Outline for remaining CL Topics

- K-map method of two-level logic simplification
- Multi-level Logic
- NAND/NOR networks
- EXOR revisited

Algorithmic Two-level Logic Simplication

Key tool: The Uniting Theorem:

$$
x y^{\prime}+x y=x\left(y^{\prime}+y\right)=x(1)=x
$$

$\mathbf{a b}$	\mathbf{f}	$f=a b^{\prime}+a b=a\left(b^{\prime}+b\right)=a$
00	$\mathbf{0}$	b values change within the on-set rows
01	0	a values don't change
10	1	b is eliminated, a remains

$a b$	g	$g=a^{\prime} b^{\prime}+a b^{\prime}=\left(a^{\prime}+a\right) b^{\prime}=b^{\prime}$
00	1	b values stay the same
01	0	a values changes
10	1	a
11	0	b^{\prime} remains, a is eliminated

Boolean Cubes

Visual technique for identifying when the Uniting Theorem can be applied
Alternative way to represent boolean functions.
Filled in nodes represent a in the function. Moving between adjacent nodes represents changing only one input.

- Sub-cubes of on-nodes can be used for simplification.
- On-set: filled in nodes, off-set: empty nodes
ab|f g 0001
0100
1011
1110

3-variable cube example

FA carry out:

Spring 2010

Karnaugh Map Method

- K-map is an alternative method of representing the TT and to help visual the adjacencies.

5 \& 6 variable k-maps possible

Karnaugh Map Method

- Adjacent groups of 1's represent product terms

ab

\[

\]

cout $=a b+b c+a c$

ab

| | 00 | 01 | 11 | 10 |
| :---: | :--- | :--- | :--- | :--- | :--- |
| 0 | 0 | 0 | 1 | 1 |
| 1 | 0 | 0 | 1 | 1 |

$f=a$

K-map Simplification

1. Draw K-map of the appropriate number of variables (between 2 and 6)
2. Fill in map with function values from truth table.
3. Form groups of 1 's.
\checkmark Dimensions of groups must be even powers of two ($1 \times 1,1 \times 2$, $1 \times 4, \ldots, 2 \times 2,2 \times 4, \ldots)$
\checkmark Form as large as possible groups and as few groups as possible.
\checkmark Groups can overlap (this helps make larger groups)
\checkmark Remember K-map is periodical in all dimensions (groups can cross over edges of map and continue on other side)
4. For each group write a product term.

- the term includes the "constant" variables (use the uncomplemented variable for a constant 1 and complemented variable for constant 0)

5. Form Boolean expression as sum-of-products.

K-maps [cont.]

Product-of-Sums Version

1. Form groups of 0 's instead of 1's.
2. For each group write a sum term.

- the term includes the "constant" variables (use the uncomplemented variable for a constant 0 and complemented variable for constant 1)

3. Form Boolean expression as product-of-sums.

> ab

ad	00	01	11	10
00	1	0	0	1
01	0	1	0	
11	1	1	1	1
10	1	1	1	1
	1	1		

$$
f=\left(b^{\prime}+c+d\right)\left(a^{\prime}+c+d^{\prime}\right)\left(b+c+d^{\prime}\right)
$$

BCD incrementer example

Binary Coded Decimal

	abcd	wxyz	
0	0000	0001	
1	0001	0010	\{a,b,c,d\}
2	0010	0011	
3	0011	0100	$4 \downarrow$
4	0100	0101	4
5	0101	0110	
6	0110	0111	+1
7	0111	1000	
8	1000	1001	
9	1001	0000	$4 才$
	1010	---	
	1011	---	\{w, x, y, z\}
	1100	---	
	1101	- -	
	1110		
	1111	- - -	

BCD Incrementer Example

- Note one map for each output variable.
- Function includes "don't cares" (shown as "-" in the table).
- These correspond to places in the function where we don't care about its value, because we don't expect some particular input patterns.
- We are free to assign either 0 or 1 to each don't care in the function, as a means to increase group sizes.
- In general, you might choose to write product-ofsums or sum-of-products according to which one leads to a simpler expression.

BCD incrementer example

BCD incrementer example

$$
a b
$$

	Z				$y=$
	00011110				
00	1	1	-	1	
01	0	0	-	0	
11	0	0	-	-	
10	1	1	-	-	

Higher Dimensional K-maps

Multi-level Combinational Logic

- Example: reduced sum-of-products form $x=a d f+a e f+b d f+b e f+c d f+c e f+g$
- Implementation in 2-levels with gates:
cost: 17 -input OR, 63 -input AND

$$
\text { => } 50 \text { transistors }
$$

- Factored form:
$x=(a+b+c)(d+e) f+g$
cost: 13 -input OR, 2 2-input OR, 13 -input AND
=> 20 transistors
delay: 3-input OR + 3-input AND + 2-input OR

Footnote: NAND would be used in place of all ANDs and ORs.

Which is faster?

In general: Using multiple levels (more than 2) will reduce the cost. Sometimes also delay. Sometimes a tradeoff between cost and delay.

Multi-level Combinational Logic

Another Example: $F=a b c+a b d+a^{\prime} c^{\prime} d^{\prime}+b^{\prime} c^{\prime} d^{\prime}$
 let $x=a b y=c+d$

No convenient hand methods exist for multi-level logic simplification:
a) CAD Tools use sophisticated algorithms and heuristics
b) Humans and tools often exploit some special structure (example adder)

Are these optimizations still relevant for LUT implementations?

NAND-NAND \& NOR-NOR Networks

DeMorgan's Law Review:

push bubbles or introduce in pairs or remove pairs:
$\left(x^{\prime}\right)^{\prime}=x$.

NAND-NAND \& NOR-NOR Networks

- Mapping from AND/OR to NAND/NAND
a)

b)

c)

d)

NAND-NAND \& NOR-NOR Networks

- Mapping AND/OR to NOR/NOR
- Mapping OR/AND to NOR/NOR

- OR/AND to NAND/NAND (by symmetry with above)

Multi-level Networks

Convert to NANDs:
$F=a(b+c d)+b c^{\prime}$

(note fanout)

EXOR Function
Parity, addition $\bmod 2$
$x \oplus y=x^{\prime} y+x y^{\prime}$

	xor	xno
00	0	1
01	1	0
10	1	0
11	0	1

Another approach:

