
Spring 2010 EECS150 - Lec18-timing(2) Page

EECS150 - Digital Design
Lecture 18 - Circuit Timing (2)

March 17, 2010
John Wawrzynek

1

Spring 2010 EECS150 - Lec18-timing(2) Page

In General ...

T ≥ τclk→Q + τCL + τsetup

2

For correct operation:

for all paths.

• How do we enumerate all paths?
– Any circuit input or register output to any register input or

circuit output?
• Note:

– “setup time” for outputs is a function of what it connects to.
– “clk-to-q” for circuit inputs depends on where it comes from.

Spring 2010 EECS150 - Lec18-timing(2) Page

Gate Delay is the Result of Cascading
• Cascaded gates:

“transfer curve” for inverter.

3

Spring 2010 EECS150 - Lec18-timing(2) Page

Delay in Flip-flops
• Setup time results from delay

through first latch.

• Clock to Q delay results from
delay through second latch.

clk

clk’

clk

clk’

clk

clk’

clk

clk’

4

Spring 2010 EECS150 - Lec18-timing(2) Page

Wire Delay
• Even in those cases where the

transmission line effect is
negligible:
– Wires posses distributed

resistance and capacitance

– Time constant associated with
distributed RC is proportional
to the square of the length

• For short wires on ICs,
resistance is insignificant
(relative to effective R of
transistors), but C is important.
– Typically around half of C of

gate load is in the wires.
• For long wires on ICs:

– busses, clock lines, global
control signal, etc.

– Resistance is significant,
therefore distributed RC effect
dominates.

– signals are typically “rebuffered”
to reduce delay:

v1 v2 v3 v4

5

v1

v4
v3

v2

time

Spring 2010 EECS150 - Lec18-timing(2) Page

Delay and “Fan-out”

• The delay of a gate is proportional to its output capacitance.
Connecting the output of gate one increases it’s output capacitance.
Therefore, it takes increasingly longer for the output of a gate to
reach the switching threshold of the gates it drives as we add more
output connections.

• Driving wires also contributes to fan-out delay.
• What can be done to remedy this problem in large fan-out situations?

1

3

2

6

Spring 2010 EECS150 - Lec18-timing(2) Page

“Critical” Path

• Critical Path: the path in the entire design with the maximum
delay.
– This could be from state element to state element, or from

input to state element, or state element to output, or from input
to output (unregistered paths).

• For example, what is the critical path in this circuit?

• Why do we care about the critical path?

7

Spring 2010 EECS150 - Lec18-timing(2) Page

Searching for processor critical path1600 IEEE JOURNAL OF SOLID-STATE CIRCUITS, VOL. 36, NO. 11, NOVEMBER 2001

Fig. 1. Process SEM cross section.

The process was raised from [1] to limit standby power.

Circuit design and architectural pipelining ensure low voltage

performance and functionality. To further limit standby current

in handheld ASSPs, a longer poly target takes advantage of the

versus dependence and source-to-body bias is used

to electrically limit transistor in standby mode. All core

nMOS and pMOS transistors utilize separate source and bulk

connections to support this. The process includes cobalt disili-

cide gates and diffusions. Low source and drain capacitance, as

well as 3-nm gate-oxide thickness, allow high performance and

low-voltage operation.

III. ARCHITECTURE

The microprocessor contains 32-kB instruction and data

caches as well as an eight-entry coalescing writeback buffer.

The instruction and data cache fill buffers have two and four

entries, respectively. The data cache supports hit-under-miss

operation and lines may be locked to allow SRAM-like oper-

ation. Thirty-two-entry fully associative translation lookaside

buffers (TLBs) that support multiple page sizes are provided

for both caches. TLB entries may also be locked. A 128-entry

branch target buffer improves branch performance a pipeline

deeper than earlier high-performance ARM designs [2], [3].

A. Pipeline Organization

To obtain high performance, the microprocessor core utilizes

a simple scalar pipeline and a high-frequency clock. In addition

to avoiding the potential power waste of a superscalar approach,

functional design and validation complexity is decreased at the

expense of circuit design effort. To avoid circuit design issues,

the pipeline partitioning balances the workload and ensures that

no one pipeline stage is tight. The main integer pipeline is seven

stages, memory operations follow an eight-stage pipeline, and

when operating in thumb mode an extra pipe stage is inserted

after the last fetch stage to convert thumb instructions into ARM

instructions. Since thumb mode instructions [11] are 16 b, two

instructions are fetched in parallel while executing thumb in-

structions. A simplified diagram of the processor pipeline is

Fig. 2. Microprocessor pipeline organization.

shown in Fig. 2, where the state boundaries are indicated by

gray. Features that allow the microarchitecture to achieve high

speed are as follows.

The shifter and ALU reside in separate stages. The ARM in-

struction set allows a shift followed by an ALU operation in a

single instruction. Previous implementations limited frequency

by having the shift and ALU in a single stage. Splitting this op-

eration reduces the critical ALU bypass path by approximately

1/3. The extra pipeline hazard introduced when an instruction is

immediately followed by one requiring that the result be shifted

is infrequent.

Decoupled Instruction Fetch.A two-instruction deep queue is

implemented between the second fetch and instruction decode

pipe stages. This allows stalls generated later in the pipe to be

deferred by one or more cycles in the earlier pipe stages, thereby

allowing instruction fetches to proceed when the pipe is stalled,

and also relieves stall speed paths in the instruction fetch and

branch prediction units.

Deferred register dependency stalls. While register depen-

dencies are checked in the RF stage, stalls due to these hazards

are deferred until the X1 stage. All the necessary operands are

then captured from result-forwarding busses as the results are

returned to the register file.

One of the major goals of the design was to minimize the en-

ergy consumed to complete a given task. Conventional wisdom

has been that shorter pipelines are more efficient due to re-

Must consider all connected register pairs,
paths from input to register, register to
output. Don’t forget the controller.

?

8

• Design tools help in the search.
– Synthesis tools report delays on paths,
– Special static timing analyzers accept

a design netlist and report path delays,
– and, of course, simulators can be used

to determine timing performance.

Tools that are expected to do something
about the timing behavior (such as
synthesizers), also include provisions for
specifying input arrival times (relative to the
clock), and output requirements (set-up
times of next stage).

Spring 2010 EECS150 - Lec18-timing(2) Page

Real Stuff: Timing Analysis

From “The circuit and physical design of the POWER4 microprocessor”, IBM J Res and Dev, 46:1, Jan 2002, J.D. Warnock et al.

netlist. Of these, 121 713 were top-level chip global nets,
and 21 711 were processor-core-level global nets. Against
this model 3.5 million setup checks were performed in late
mode at points where clock signals met data signals in
latches or dynamic circuits. The total number of timing
checks of all types performed in each chip run was
9.8 million. Depending on the configuration of the timing
run and the mix of actual versus estimated design data,
the amount of real memory required was in the range
of 12 GB to 14 GB, with run times of about 5 to 6 hours
to the start of timing-report generation on an RS/6000*
Model S80 configured with 64 GB of real memory.
Approximately half of this time was taken up by reading
in the netlist, timing rules, and extracted RC networks, as

well as building and initializing the internal data structures
for the timing model. The actual static timing analysis
typically took 2.5–3 hours. Generation of the entire
complement of reports and analysis required an additional
5 to 6 hours to complete. A total of 1.9 GB of timing
reports and analysis were generated from each chip timing
run. This data was broken down, analyzed, and organized
by processor core and GPS, individual unit, and, in the
case of timing contracts, by unit and macro. This was one
component of the 24-hour-turnaround time achieved for
the chip-integration design cycle. Figure 26 shows the
results of iterating this process: A histogram of the final
nominal path delays obtained from static timing for the
POWER4 processor.

The POWER4 design includes LBIST and ABIST
(Logic/Array Built-In Self-Test) capability to enable full-
frequency ac testing of the logic and arrays. Such testing
on pre-final POWER4 chips revealed that several circuit
macros ran slower than predicted from static timing. The
speed of the critical paths in these macros was increased
in the final design. Typical fast ac LBIST laboratory test
results measured on POWER4 after these paths were
improved are shown in Figure 27.

Summary
The 174-million-transistor !1.3-GHz POWER4 chip,
containing two microprocessor cores and an on-chip
memory subsystem, is a large, complex, high-frequency
chip designed by a multi-site design team. The
performance and schedule goals set at the beginning of
the project were met successfully. This paper describes
the circuit and physical design of POWER4, emphasizing
aspects that were important to the project’s success in the
areas of design methodology, clock distribution, circuits,
power, integration, and timing.

Figure 25

POWER4 timing flow. This process was iterated daily during the
physical design phase to close timing.

VIM

Timer files ReportsAsserts

Spice

Spice

GL/1

Reports

< 12 hr

< 12 hr

< 12 hr

< 48 hr

< 24 hr

Non-uplift
timing

Noise
impact
on timing

Uplift
analysis

Capacitance
adjust

Chipbench /
EinsTimer

Chipbench /
EinsTimer

Extraction

Core or chip
wiring

Analysis/update
(wires, buffers)

Notes:
• Executed 2–3 months
 prior to tape-out
• Fully extracted data
 from routed designs
 • Hierarchical extraction
• Custom logic handled
 separately
 • Dracula
 • Harmony
• Extraction done for
 • Early
 • Late

Extracted units
 (flat or hierarchical)
Incrementally
 extracted RLMs
Custom NDRs
VIMs

Figure 26

Histogram of the POWER4 processor path delays.

!40 !20 0 20 40 60 80 100 120 140 160 180 200 220 240 260 280
Timing slack (ps)

L
at

e-
m

od
e

tim
in

g
ch

ec
ks

 (
th

ou
sa

nd
s)

0

50

100

150

200

IBM J. RES. & DEV. VOL. 46 NO. 1 JANUARY 2002 J. D. WARNOCK ET AL.

47

Most paths have hundreds of
picoseconds to spare.The critical path

9

Spring 2010 EECS150 - Lec18-timing(2) Page

Clock Skew

• Unequal delay in distribution of the clock signal to various parts of
a circuit:
– if not accounted for, can lead to erroneous behavior.
– Comes about because:

• clock wires have delay,
• circuit is designed with a different number of clock buffers from

the clock source to the various clock loads, or
• buffers have unequal delay.

– All synchronous circuits experience some clock skew:
• more of an issue for high-performance designs operating with very

little extra time per clock cycle.

clock skew, delay in distribution

10

Spring 2010 EECS150 - Lec18-timing(2) Page

Clock Skew (cont.)

• If clock period T = TCL+Tsetup+Tclk→Q, circuit will fail.

• Therefore:
1. Control clock skew
 a) Careful clock distribution. Equalize path delay from clock source to

all clock loads by controlling wires delay and buffer delay.
 b) don’t “gate” clocks in a non-uniform way.
2. T ≥ TCL+Tsetup+Tclk→Q + worst case skew.

• Most modern large high-performance chips (microprocessors)
control end to end clock skew to a small fraction of the clock period.

clock skew, delay in distribution
CL

CLKCLK’

CLK

CLK’

11

Spring 2010 EECS150 - Lec18-timing(2) Page

Clock Skew (cont.)

• Note reversed buffer.
• In this case, clock skew actually provides extra time (adds to

the effective clock period).
• This effect has been used to help run circuits as higher

clock rates. Risky business!

CL

CLK
CLK’

clock skew, delay in distribution

CLK

CLK’

12

Spring 2010 EECS150 - Lec18-timing(2) Page

1600 IEEE JOURNAL OF SOLID-STATE CIRCUITS, VOL. 36, NO. 11, NOVEMBER 2001

Fig. 1. Process SEM cross section.

The process was raised from [1] to limit standby power.

Circuit design and architectural pipelining ensure low voltage

performance and functionality. To further limit standby current

in handheld ASSPs, a longer poly target takes advantage of the

versus dependence and source-to-body bias is used

to electrically limit transistor in standby mode. All core

nMOS and pMOS transistors utilize separate source and bulk

connections to support this. The process includes cobalt disili-

cide gates and diffusions. Low source and drain capacitance, as

well as 3-nm gate-oxide thickness, allow high performance and

low-voltage operation.

III. ARCHITECTURE

The microprocessor contains 32-kB instruction and data

caches as well as an eight-entry coalescing writeback buffer.

The instruction and data cache fill buffers have two and four

entries, respectively. The data cache supports hit-under-miss

operation and lines may be locked to allow SRAM-like oper-

ation. Thirty-two-entry fully associative translation lookaside

buffers (TLBs) that support multiple page sizes are provided

for both caches. TLB entries may also be locked. A 128-entry

branch target buffer improves branch performance a pipeline

deeper than earlier high-performance ARM designs [2], [3].

A. Pipeline Organization

To obtain high performance, the microprocessor core utilizes

a simple scalar pipeline and a high-frequency clock. In addition

to avoiding the potential power waste of a superscalar approach,

functional design and validation complexity is decreased at the

expense of circuit design effort. To avoid circuit design issues,

the pipeline partitioning balances the workload and ensures that

no one pipeline stage is tight. The main integer pipeline is seven

stages, memory operations follow an eight-stage pipeline, and

when operating in thumb mode an extra pipe stage is inserted

after the last fetch stage to convert thumb instructions into ARM

instructions. Since thumb mode instructions [11] are 16 b, two

instructions are fetched in parallel while executing thumb in-

structions. A simplified diagram of the processor pipeline is

Fig. 2. Microprocessor pipeline organization.

shown in Fig. 2, where the state boundaries are indicated by

gray. Features that allow the microarchitecture to achieve high

speed are as follows.

The shifter and ALU reside in separate stages. The ARM in-

struction set allows a shift followed by an ALU operation in a

single instruction. Previous implementations limited frequency

by having the shift and ALU in a single stage. Splitting this op-

eration reduces the critical ALU bypass path by approximately

1/3. The extra pipeline hazard introduced when an instruction is

immediately followed by one requiring that the result be shifted

is infrequent.

Decoupled Instruction Fetch.A two-instruction deep queue is

implemented between the second fetch and instruction decode

pipe stages. This allows stalls generated later in the pipe to be

deferred by one or more cycles in the earlier pipe stages, thereby

allowing instruction fetches to proceed when the pipe is stalled,

and also relieves stall speed paths in the instruction fetch and

branch prediction units.

Deferred register dependency stalls. While register depen-

dencies are checked in the RF stage, stalls due to these hazards

are deferred until the X1 stage. All the necessary operands are

then captured from result-forwarding busses as the results are

returned to the register file.

One of the major goals of the design was to minimize the en-

ergy consumed to complete a given task. Conventional wisdom

has been that shorter pipelines are more efficient due to re-

Real Stuff: Floorplanning Intel XScale 80200

13

Spring 2010 EECS150 - Lec18-timing(2) Page

the total wire delay is similar to the total buffer delay. A
patented tuning algorithm [16] was required to tune the
more than 2000 tunable transmission lines in these sector
trees to achieve low skew, visualized as the flatness of the
grid in the 3D visualizations. Figure 8 visualizes four of
the 64 sector trees containing about 125 tuned wires
driving 1/16th of the clock grid. While symmetric H-trees
were desired, silicon and wiring blockages often forced
more complex tree structures, as shown. Figure 8 also
shows how the longer wires are split into multiple-fingered
transmission lines interspersed with Vdd and ground shields
(not shown) for better inductance control [17, 18]. This
strategy of tunable trees driving a single grid results in low
skew among any of the 15 200 clock pins on the chip,
regardless of proximity.

From the global clock grid, a hierarchy of short clock
routes completed the connection from the grid down to
the individual local clock buffer inputs in the macros.
These clock routing segments included wires at the macro
level from the macro clock pins to the input of the local
clock buffer, wires at the unit level from the macro clock
pins to the unit clock pins, and wires at the chip level
from the unit clock pins to the clock grid.

Design methodology and results
This clock-distribution design method allows a highly
productive combination of top-down and bottom-up design
perspectives, proceeding in parallel and meeting at the
single clock grid, which is designed very early. The trees
driving the grid are designed top-down, with the maximum
wire widths contracted for them. Once the contract for the
grid had been determined, designers were insulated from
changes to the grid, allowing necessary adjustments to the
grid to be made for minimizing clock skew even at a very
late stage in the design process. The macro, unit, and chip
clock wiring proceeded bottom-up, with point tools at
each hierarchical level (e.g., macro, unit, core, and chip)
using contracted wiring to form each segment of the total
clock wiring. At the macro level, short clock routes
connected the macro clock pins to the local clock buffers.
These wires were kept very short, and duplication of
existing higher-level clock routes was avoided by allowing
the use of multiple clock pins. At the unit level, clock
routing was handled by a special tool, which connected the
macro pins to unit-level pins, placed as needed in pre-
assigned wiring tracks. The final connection to the fixed

Figure 6

Schematic diagram of global clock generation and distribution.

PLL

Bypass

Reference
clock in

Reference
clock out

Clock distribution
Clock out

Figure 7

3D visualization of the entire global clock network. The x and y
coordinates are chip x, y, while the z axis is used to represent
delay, so the lowest point corresponds to the beginning of the
clock distribution and the final clock grid is at the top. Widths are
proportional to tuned wire width, and the three levels of buffers
appear as vertical lines.

D
el

ay

Grid

Tuned
sector
trees

Sector
buffers

Buffer level 2

Buffer level 1

y

x

Figure 8

Visualization of four of the 64 sector trees driving the clock grid,
using the same representation as Figure 7. The complex sector
trees and multiple-fingered transmission lines used for inductance
control are visible at this scale.

D
el

ay Multiple-
fingered
transmission
line

y
x

J. D. WARNOCK ET AL. IBM J. RES. & DEV. VOL. 46 NO. 1 JANUARY 2002

32

Clock Tree
Delays,

IBM “Power”
CPU

De
la

y

14

Spring 2010 EECS150 - Lec18-timing(2) Page

the total wire delay is similar to the total buffer delay. A
patented tuning algorithm [16] was required to tune the
more than 2000 tunable transmission lines in these sector
trees to achieve low skew, visualized as the flatness of the
grid in the 3D visualizations. Figure 8 visualizes four of
the 64 sector trees containing about 125 tuned wires
driving 1/16th of the clock grid. While symmetric H-trees
were desired, silicon and wiring blockages often forced
more complex tree structures, as shown. Figure 8 also
shows how the longer wires are split into multiple-fingered
transmission lines interspersed with Vdd and ground shields
(not shown) for better inductance control [17, 18]. This
strategy of tunable trees driving a single grid results in low
skew among any of the 15 200 clock pins on the chip,
regardless of proximity.

From the global clock grid, a hierarchy of short clock
routes completed the connection from the grid down to
the individual local clock buffer inputs in the macros.
These clock routing segments included wires at the macro
level from the macro clock pins to the input of the local
clock buffer, wires at the unit level from the macro clock
pins to the unit clock pins, and wires at the chip level
from the unit clock pins to the clock grid.

Design methodology and results
This clock-distribution design method allows a highly
productive combination of top-down and bottom-up design
perspectives, proceeding in parallel and meeting at the
single clock grid, which is designed very early. The trees
driving the grid are designed top-down, with the maximum
wire widths contracted for them. Once the contract for the
grid had been determined, designers were insulated from
changes to the grid, allowing necessary adjustments to the
grid to be made for minimizing clock skew even at a very
late stage in the design process. The macro, unit, and chip
clock wiring proceeded bottom-up, with point tools at
each hierarchical level (e.g., macro, unit, core, and chip)
using contracted wiring to form each segment of the total
clock wiring. At the macro level, short clock routes
connected the macro clock pins to the local clock buffers.
These wires were kept very short, and duplication of
existing higher-level clock routes was avoided by allowing
the use of multiple clock pins. At the unit level, clock
routing was handled by a special tool, which connected the
macro pins to unit-level pins, placed as needed in pre-
assigned wiring tracks. The final connection to the fixed

Figure 6

Schematic diagram of global clock generation and distribution.

PLL

Bypass

Reference
clock in

Reference
clock out

Clock distribution
Clock out

Figure 7

3D visualization of the entire global clock network. The x and y
coordinates are chip x, y, while the z axis is used to represent
delay, so the lowest point corresponds to the beginning of the
clock distribution and the final clock grid is at the top. Widths are
proportional to tuned wire width, and the three levels of buffers
appear as vertical lines.

D
el

ay

Grid

Tuned
sector
trees

Sector
buffers

Buffer level 2

Buffer level 1

y

x

Figure 8

Visualization of four of the 64 sector trees driving the clock grid,
using the same representation as Figure 7. The complex sector
trees and multiple-fingered transmission lines used for inductance
control are visible at this scale.

D
el

ay Multiple-
fingered
transmission
line

y
x

J. D. WARNOCK ET AL. IBM J. RES. & DEV. VOL. 46 NO. 1 JANUARY 2002

32

Clock Tree Delays, IBM Power

clock grid was completed with a tool run at the chip level,
connecting unit-level pins to the grid. At this point, the
clock tuning and the bottom-up clock routing process still
have a great deal of flexibility to respond rapidly to even
late changes. Repeated practice routing and tuning were
performed by a small, focused global clock team as the
clock pins and buffer placements evolved to guarantee
feasibility and speed the design process.

Measurements of jitter and skew can be carried out
using the I/Os on the chip. In addition, approximately 100
top-metal probe pads were included for direct probing
of the global clock grid and buffers. Results on actual
POWER4 microprocessor chips show long-distance
skews ranging from 20 ps to 40 ps (cf. Figure 9). This is
improved from early test-chip hardware, which showed
as much as 70 ps skew from across-chip channel-length
variations [19]. Detailed waveforms at the input and
output of each global clock buffer were also measured
and compared with simulation to verify the specialized
modeling used to design the clock grid. Good agreement
was found. Thus, we have achieved a “correct-by-design”
clock-distribution methodology. It is based on our design
experience and measurements from a series of increasingly
fast, complex server microprocessors. This method results
in a high-quality global clock without having to use
feedback or adjustment circuitry to control skews.

Circuit design
The cycle-time target for the processor was set early in the
project and played a fundamental role in defining the
pipeline structure and shaping all aspects of the circuit
design as implementation proceeded. Early on, critical
timing paths through the processor were simulated in
detail in order to verify the feasibility of the design
point and to help structure the pipeline for maximum
performance. Based on this early work, the goal for the
rest of the circuit design was to match the performance set
during these early studies, with custom design techniques
for most of the dataflow macros and logic synthesis for
most of the control logic—an approach similar to that
used previously [20]. Special circuit-analysis and modeling
techniques were used throughout the design in order to
allow full exploitation of all of the benefits of the IBM
advanced SOI technology.

The sheer size of the chip, its complexity, and the
number of transistors placed some important constraints
on the design which could not be ignored in the push to
meet the aggressive cycle-time target on schedule. These
constraints led to the adoption of a primarily static-circuit
design strategy, with dynamic circuits used only sparingly
in SRAMs and other critical regions of the processor core.
Power dissipation was a significant concern, and it was a
key factor in the decision to adopt a predominantly static-
circuit design approach. In addition, the SOI technology,

including uncertainties associated with the modeling
of the floating-body effect [21–23] and its impact on
noise immunity [22, 24 –27] and overall chip decoupling
capacitance requirements [26], was another factor behind
the choice of a primarily static design style. Finally, the
size and logical complexity of the chip posed risks to
meeting the schedule; choosing a simple, robust circuit
style helped to minimize overall risk to the project
schedule with most efficient use of CAD tool and design
resources. The size and complexity of the chip also
required rigorous testability guidelines, requiring almost
all cycle boundary latches to be LSSD-compatible for
maximum dc and ac test coverage.

Another important circuit design constraint was the
limit placed on signal slew rates. A global slew rate limit
equal to one third of the cycle time was set and enforced
for all signals (local and global) across the whole chip.
The goal was to ensure a robust design, minimizing
the effects of coupled noise on chip timing and also
minimizing the effects of wiring-process variability on
overall path delay. Nets with poor slew also were found
to be more sensitive to device process variations and
modeling uncertainties, even where long wires and RC
delays were not significant factors. The general philosophy
was that chip cycle-time goals also had to include the
slew-limit targets; it was understood from the beginning
that the real hardware would function at the desired
cycle time only if the slew-limit targets were also met.

The following sections describe how these design
constraints were met without sacrificing cycle time. The
latch design is described first, including a description of
the local clocking scheme and clock controls. Then the
circuit design styles are discussed, including a description

Figure 9

Global clock waveforms showing 20 ps of measured skew.

1.5

1.0

0.5

0.0

0 500 1000 1500 2000 2500

20 ps skew

V
ol

ts
 (

V
)

Time (ps)

IBM J. RES. & DEV. VOL. 46 NO. 1 JANUARY 2002 J. D. WARNOCK ET AL.

33

15

Timing in Xilinx Designs

From earlier lecture: Virtex-5 slice

194 www.xilinx.com Virtex-5 FPGA User Guide
UG190 (v4.2) May 9, 2008

Chapter 5: Configurable Logic Blocks (CLBs)
R

Designing Large Multiplexers

4:1 Multiplexer

Each Virtex-5 LUT can be configured into a 4:1 MUX. The 4:1 MUX can be implemented
with a flip-flop in the same slice. Up to four 4:1 MUXes can be implemented in a slice, as
shown in Figure 5-21.

Figure 5-21: Four 4:1 Multiplexers in a Slice

UG190_5_21_050506

(D[6:1])

(C[6:1])

(B[6:1])

(A[6:1])

(CLK)
CLK

6

SLICE

LUT

LUT

LUT

LUT

A[6:1]

O6

6 A[6:1]

O6

Registered
Output

4:1 MUX Output

(Optional)

D Q

(D)

(DQ)

Registered
Output

4:1 MUX Output

(Optional)

D Q

(C)

(CQ)

Registered
Output

4:1 MUX Output

(Optional)

D Q

(B)

(BQ)

Registered
Output

4:1 MUX Output

(Optional)

D Q

(A)

(AQ)

6 A[6:1]

O6

6 A[6:1]

O6

SEL D [1:0], DATA D [3:0]
Input

SEL C [1:0], DATA C [3:0]
Input

SEL B [1:0], DATA B [3:0]
Input

SEL A [1:0], DATA A [3:0]
Input

6-LUT delay is 0.9 ns
1.1 GHz toggle speed

128 x 32b LUT RAM
access time is 1.1 ns

0.909 GHz toggle speed

But yet ...

!"#$%&'()*$$+,,-$$$).'/0$+1

!""#$%&'$()*+,&-"#./*

).0*1$%2(3#&4. 567

2 !"##"$%&'"%()%*"+%,-.'%
/ 0123%,-.4'%5*%65$#"7849%:!%4;<

/ 04<<%,-.2'%%5*%65$#"78=9%:!%=;<

2)$(>%?%'#@A"%8B%=%'#@A"%C5C"D5*"

2 *"+%C$(E"''($F%)$(>%<;31%
G:5C'H:IJ%#(%0;04%G:5C'H:IJ

2 0K<:IJ%8B%1<0%:IJ

2 022%8B%1?<%GL$M'#(*"%:5C'

-'"%*"+%%2%,-.9%1%'#@A"%N""C"$%C5C"9%%0<O%>($"%:IJ9%?3O%P"##"$%C"$)($>@*E"-'"%*"+%%2%,-.9%1%'#@A"%N""C"$%C5C"9%%0<O%>($"%:IJ9%?3O%P"##"$%C"$)($>@*E"

!"#$!"#$

!%&$!%&$

!'()*+,)-.'/(-01

2+(3-')1*45,1

!'()*+,)-.'/(-01

2+(3-')1*45,1

65)5/(-01

2+(3-')1*45,1

65)5/(-01

2+(3-')1*45,1

6"#$6"#$

6%&$6%&$

$+(

!7

$+($+(

!7!7

#*.8*59

:.+')1*

#*.8*59#*.8*59

:.+')1*:.+')1*

!'()*+,)-.'

$+441*

!'()*+,)-.'

$+441*

!'()*+,)-.'

61,.01

!'()*+,)-.'!'()*+,)-.'

61,.0161,.01

;18-()1*37-<1

=>?=>2

;18-()1*37-<1

=>?=>2

$+(

!7

$+($+(

!7!7

@00AB+2

BC-4)A%.8-,5<BC-4)A%.8-,5<BC-4)A%.8-,5<

&+<)-D<E&+<)-D<E

Xilinx CPU runs at 201 MHz ... 4.5x slower

MicroBlaze

Major delay source: Interconnect

Virtex-5 FPGA User Guide www.xilinx.com 171
UG190 (v4.2) May 9, 2008

R

Chapter 5

Configurable Logic Blocks (CLBs)

CLB Overview
The Configurable Logic Blocks (CLBs) are the main logic resources for implementing
sequential as well as combinatorial circuits. Each CLB element is connected to a switch
matrix for access to the general routing matrix (shown in Figure 5-1). A CLB element
contains a pair of slices. These two slices do not have direct connections to each other, and
each slice is organized as a column. Each slice in a column has an independent carry chain.
For each CLB, slices in the bottom of the CLB are labeled as SLICE(0), and slices in the top
of the CLB are labeled as SLICE(1).

The Xilinx tools designate slices with the following definitions. An “X” followed by a
number identifies the position of each slice in a pair as well as the column position of the
slice. The “X” number counts slices starting from the bottom in sequence 0, 1 (the first CLB
column); 2, 3 (the second CLB column); etc. A “Y” followed by a number identifies a row of
slices. The number remains the same within a CLB, but counts up in sequence from one
CLB row to the next CLB row, starting from the bottom. Figure 5-2 shows four CLBs
located in the bottom-left corner of the die.

Figure 5-1: Arrangement of Slices within the CLB

Switch
Matrix

Slice(1)

COUTCOUT

CINCIN

Slice(0)

CLB

UG190_5_01_122605

Slices define regular connections to the
switching fabric, and to slices in

CLBs above and below it on the die.

172 www.xilinx.com Virtex-5 FPGA User Guide
UG190 (v4.2) May 9, 2008

Chapter 5: Configurable Logic Blocks (CLBs)
R

Slice Description
Every slice contains four logic-function generators (or look-up tables), four storage
elements, wide-function multiplexers, and carry logic. These elements are used by all slices
to provide logic, arithmetic, and ROM functions. In addition to this, some slices support
two additional functions: storing data using distributed RAM and shifting data with 32-bit
registers. Slices that support these additional functions are called SLICEM; others are
called SLICEL. SLICEM (shown in Figure 5-3) represents a superset of elements and
connections found in all slices. SLICEL is shown in Figure 5-4.

Figure 5-2: Row and Column Relationship between CLBs and Slices

Slice
X1Y1

COUTCOUT

CINCIN

Slice
X0Y1

CLB

UG190_5_02_122605

Slice
X1Y0

COUTCOUT

Slice
X0Y0

CLB

Slice
X3Y1

COUTCOUT

CINCIN

Slice
X2Y1

CLB

Slice
X3Y0

COUTCOUT

Slice
X2Y0

CLB

Spartan-3 FPGA Family: Introduction and Ordering Information

2 www.xilinx.com DS099-1 (v1.3) July 13, 2004
1-800-255-7778 Preliminary Product Specification

6

R

Architectural Overview

The Spartan-3 family architecture consists of five funda-
mental programmable functional elements:

• Configurable Logic Blocks (CLBs) contain RAM-based
Look-Up Tables (LUTs) to implement logic and storage
elements that can be used as flip-flops or latches.
CLBs can be programmed to perform a wide variety of
logical functions as well as to store data.

• Input/Output Blocks (IOBs) control the flow of data
between the I/O pins and the internal logic of the
device. Each IOB supports bidirectional data flow plus
3-state operation. Twenty-four different signal
standards, including seven high-performance
differential standards, are available as shown in
Table 2. Double Data-Rate (DDR) registers are
included. The Digitally Controlled Impedance (DCI)
feature provides automatic on-chip terminations,
simplifying board designs.

• Block RAM provides data storage in the form of 18-Kbit
dual-port blocks.

• Multiplier blocks accept two 18-bit binary numbers as
inputs and calculate the product.

• Digital Clock Manager (DCM) blocks provide
self-calibrating, fully digital solutions for distributing,
delaying, multiplying, dividing, and phase shifting clock
signals.

These elements are organized as shown in Figure 1. A ring
of IOBs surrounds a regular array of CLBs. The XC3S50
has a single column of block RAM embedded in the array.
Those devices ranging from the XC3S200 to the XC3S2000
have two columns of block RAM. The XC3S4000 and
XC3S5000 devices have four RAM columns. Each column
is made up of several 18K-bit RAM blocks; each block is
associated with a dedicated multiplier. The DCMs are posi-
tioned at the ends of the outer block RAM columns.

The Spartan-3 family features a rich network of traces and
switches that interconnect all five functional elements,
transmitting signals among them. Each functional element
has an associated switch matrix that permits multiple con-
nections to the routing.

Figure 1: Spartan-3 Family Architecture

DS099-1_01_032703

Notes:

1. The two additional block RAM columns of the XC3S4000 and XC3S5000
devices are shown with dashed lines. The XC3S50 has only the block RAM
column on the far left.

Simplified model of interconnect ...
Wires are slow because (1) each green dot is a transistor switch
(2) path may not be shortest length (3) all wires are too long!

Delay in FPGA designs are particularly layout sensitive. Placement and
routing tools spend most of there cycles in timing optimization. When
Xilinx designs FPGA chips, wiring channels are optimized for (2) & (3).

Connect
this

To
this

 What are the green dots?

One flip-flop and a pass gate for each switch point. In
order to have enough wires in the channels to wire up
CLBs for most circuits, we need a lot of switch points!
Thus, “80%+ of FPGA is for wiring”.

Set during
configuration.

8 www.xilinx.com WP246 (v1.2) February 1, 2007

Dynamic Power Innovations
R

Embedded Blocks
Virtex-5 devices contain more embedded (or hard IP) blocks than any prior generation
FPGA in the industry. FPGA designs that utilize these blocks properly can see
additional dramatic dynamic power reductions in comparison to implementing these
functions in general purpose FPGA logic.
Unlike the FPGA fabric, these hard IP blocks contain only the necessary transistors to
implement the required function. There are no programmable interconnects, so
routing capacitance is as small as possible. The result is that these hard IP blocks can
perform the same function in as little as one-tenth the power of the equivalent
implementation in general purpose fabric.
In many cases, embedded blocks that existed in Virtex-4 devices have received
significant design overhauls in the Virtex-5 family to improve features, performance,
and power consumption. For example, the Virtex-4 family’s 18 Kb block RAM has
been redesigned. Virtex-5 devices now contain 36 Kb block RAM modules that,
logically, can be used as a single 36 Kb memory or two individual 18 Kb memories.
But what is more interesting from a power perspective is that each of the logical 18 Kb
memory blocks is actually composed of two 9 Kb physical memory arrays. To
minimize dynamic power consumption, most block RAM configurations require only
one of the 9 Kb physical memories within each 18 Kb block to be active (powered up)
during any given Read or Write operation. Control logic on the address, input, and
output ports of the block RAM ensure that the proper 9 Kb physical array is selected
for each transaction. In this manner, dynamic power consumption occurs in only one
half of the 9 Kb physical arrays at a time. To the user, however, the block RAM appears
as one continuous memory. Figure 5 shows the 36 Kb block RAM in Virtex-5 devices.
The embedded DSP elements in Virtex-5 devices have also been redesigned to
incorporate more functionality at higher performance and lower power consumption.
On a slice versus slice comparison, the new Virtex-5 DSP slice has roughly 40% lower
dynamic power consumption relative to the Virtex-4 DSP slice. This is mostly
attributable to the voltage and capacitance scaling factors of the 65 nm process that
were discussed earlier.

Figure 4: Virtex-5 Routing Architecture with “Diagonal” Interconnects

WP246_04_050206

More realistic Virtex-5 model ...

1-hop wires to nearest neighbors

6 www.xilinx.com WP245 (v1.1.1) July 7, 2006

Design Examples
R

performance and easier design routability. Essentially, the Virtex-5 family interconnect
pattern provides fast, predictable routing based on distance.
Figure 4 compares the delays incurred from a source register in one CLB driving a
LUT packed with a second register in a surrounding CLB. The goal is to measure the
effect of the incremental routing delays for both the Virtex-4 and Virtex-5 family
architectures.

Design Examples
The benefits of the new 6-input LUT architecture are detailed in the following
examples.

Multiplexers
One of the easiest examples is a multiplexer. A four-input LUT can implement a 2:1
MUX. Every multiplexer that has more than two inputs requires additional logic
resources. A 4:1 MUX needs two 4-input LUTs and a MUXF in Virtex-4 architecture.
With the new 6-input LUT, this 4:1 MUX is now implemented with a single LUT. An
8:1 MUX in a Virtex-4 device requires four LUTs and three MUXFs. With the new
Virtex-5 family architecture, only two 6-input LUTs are required, resulting in better
performance and better logic utilization. See Figure 5.

Figure 4: Routing Delay Comparison for Virtex-4 and Virtex-5 FPGAs

CLB 1st Ring

2nd Ring

751 ps

906 ps

665 ps

723 ps1st Ring of CLBs

2nd Ring of CLBs

Virtex-4 Virtex-5

WP245_04_050106

6 www.xilinx.com WP245 (v1.1.1) July 7, 2006

Design Examples
R

performance and easier design routability. Essentially, the Virtex-5 family interconnect
pattern provides fast, predictable routing based on distance.
Figure 4 compares the delays incurred from a source register in one CLB driving a
LUT packed with a second register in a surrounding CLB. The goal is to measure the
effect of the incremental routing delays for both the Virtex-4 and Virtex-5 family
architectures.

Design Examples
The benefits of the new 6-input LUT architecture are detailed in the following
examples.

Multiplexers
One of the easiest examples is a multiplexer. A four-input LUT can implement a 2:1
MUX. Every multiplexer that has more than two inputs requires additional logic
resources. A 4:1 MUX needs two 4-input LUTs and a MUXF in Virtex-4 architecture.
With the new 6-input LUT, this 4:1 MUX is now implemented with a single LUT. An
8:1 MUX in a Virtex-4 device requires four LUTs and three MUXFs. With the new
Virtex-5 family architecture, only two 6-input LUTs are required, resulting in better
performance and better logic utilization. See Figure 5.

Figure 4: Routing Delay Comparison for Virtex-4 and Virtex-5 FPGAs

CLB 1st Ring

2nd Ring

751 ps

906 ps

665 ps

723 ps1st Ring of CLBs

2nd Ring of CLBs

Virtex-4 Virtex-5

WP245_04_050106

!"#$%&'()*$$+,,-$$$).'/0$11

!"#$%&'()*+,$"-.

23)#$

%"4405#

1$!"(

+$!"()

6$!"()

!"#$%&'/)*+,$"-.

!"#$%&'(($)#*+%

,-))$#./%

+"..$+)*.0

123&

!"#$%4"0*+%

#$-+5$6%,$#%5",

7-($%,-))$#.%

8"#%-44%"9),9)&

!"#$%&'()*$$+,,-$$$).'/0$11

!"#$%&'()*+,$"-.

23)#$

%"4405#

1$!"(

+$!"()

6$!"()

!"#$%&'/)*+,$"-.

!"#$%&'(($)#*+%

,-))$#./%

+"..$+)*.0

123&

!"#$%4"0*+%

#$-+5$6%,$#%5",

7-($%,-))$#.%

8"#%-44%"9),9)&

6 www.xilinx.com WP245 (v1.1.1) July 7, 2006

Design Examples
R

performance and easier design routability. Essentially, the Virtex-5 family interconnect
pattern provides fast, predictable routing based on distance.
Figure 4 compares the delays incurred from a source register in one CLB driving a
LUT packed with a second register in a surrounding CLB. The goal is to measure the
effect of the incremental routing delays for both the Virtex-4 and Virtex-5 family
architectures.

Design Examples
The benefits of the new 6-input LUT architecture are detailed in the following
examples.

Multiplexers
One of the easiest examples is a multiplexer. A four-input LUT can implement a 2:1
MUX. Every multiplexer that has more than two inputs requires additional logic
resources. A 4:1 MUX needs two 4-input LUTs and a MUXF in Virtex-4 architecture.
With the new 6-input LUT, this 4:1 MUX is now implemented with a single LUT. An
8:1 MUX in a Virtex-4 device requires four LUTs and three MUXFs. With the new
Virtex-5 family architecture, only two 6-input LUTs are required, resulting in better
performance and better logic utilization. See Figure 5.

Figure 4: Routing Delay Comparison for Virtex-4 and Virtex-5 FPGAs

CLB 1st Ring

2nd Ring

751 ps

906 ps

665 ps

723 ps1st Ring of CLBs

2nd Ring of CLBs

Virtex-4 Virtex-5

WP245_04_050106

8 www.xilinx.com WP245 (v1.1.1) July 7, 2006

Performance Advantages for Functional Blocks
R

• "Free" Ground or VCC to initialize the carry function

The performance for arithmetic functions as measured by the path delay is
significantly improved, as shown in Figure 7.

Performance Advantages for Functional Blocks
Table 2 shows a performance comparison of logic and arithmetic functions between
the Virtex-4 and Virtex-5 families. Figures shown are for the fastest speed grade in
each device family. Designs were run through ISE 8.1i software.

Block RAM
The block RAM base size in the Virtex-5 family has increased to 36 Kbits (from
18 Kbits in the Virtex-4 family). This makes it easier to build larger memory arrays in
Virtex-5 devices. In addition, the 36 Kb block RAM can be used as two independent
18 Kbit block RAMs, hence, there is essentially no penalty for building many 18 Kbit
or smaller RAM arrays on-chip.
The Virtex-5 family block RAM can be operated in Simple Dual Port mode to
effectively double the block RAM bandwidth. Simple Dual Port mode allows the

Figure 7: Multi-Bit Adder Timing Comparison for Virtex-4 and Virtex-5 FPGAs

8-b

1

2

3

4

16-b 32-b 64-b 8-b 16-b 32-b 64-b

Delay (ns)

Virtex-4 FPGAs

Virtex-5 FPGAs

WP245_07_051006

Table 2: Performance Comparisons of Functional Blocks

Virtex-4 FPGA Virtex-5 FPGA

6-Input Function(1) 1.1 ns 0.9 ns

Adder, 64-bit 3.5 ns 2.5 ns

Ternary Adder, 64-bit 4.3 ns 3.0 ns

Barrel Shifter, 32-bit 3.9 ns 2.8 ns

Magnitude Comparator, 48-bit 2.4 ns 1.8 ns

LUT RAM, 128 x 32-bit 1.4 ns 1.1 ns

Notes:
1. Virtex-5 FPGAs use one 6-input LUT and Virtex-4 FPGAs use two 4-input LUTs

8 www.xilinx.com WP245 (v1.1.1) July 7, 2006

Performance Advantages for Functional Blocks
R

• "Free" Ground or VCC to initialize the carry function

The performance for arithmetic functions as measured by the path delay is
significantly improved, as shown in Figure 7.

Performance Advantages for Functional Blocks
Table 2 shows a performance comparison of logic and arithmetic functions between
the Virtex-4 and Virtex-5 families. Figures shown are for the fastest speed grade in
each device family. Designs were run through ISE 8.1i software.

Block RAM
The block RAM base size in the Virtex-5 family has increased to 36 Kbits (from
18 Kbits in the Virtex-4 family). This makes it easier to build larger memory arrays in
Virtex-5 devices. In addition, the 36 Kb block RAM can be used as two independent
18 Kbit block RAMs, hence, there is essentially no penalty for building many 18 Kbit
or smaller RAM arrays on-chip.
The Virtex-5 family block RAM can be operated in Simple Dual Port mode to
effectively double the block RAM bandwidth. Simple Dual Port mode allows the

Figure 7: Multi-Bit Adder Timing Comparison for Virtex-4 and Virtex-5 FPGAs

8-b

1

2

3

4

16-b 32-b 64-b 8-b 16-b 32-b 64-b

Delay (ns)

Virtex-4 FPGAs

Virtex-5 FPGAs

WP245_07_051006

Table 2: Performance Comparisons of Functional Blocks

Virtex-4 FPGA Virtex-5 FPGA

6-Input Function(1) 1.1 ns 0.9 ns

Adder, 64-bit 3.5 ns 2.5 ns

Ternary Adder, 64-bit 4.3 ns 3.0 ns

Barrel Shifter, 32-bit 3.9 ns 2.8 ns

Magnitude Comparator, 48-bit 2.4 ns 1.8 ns

LUT RAM, 128 x 32-bit 1.4 ns 1.1 ns

Notes:
1. Virtex-5 FPGAs use one 6-input LUT and Virtex-4 FPGAs use two 4-input LUTs

Timing for small building blocks ...

Clocking

UC Regents Fall 2008 © UCBCS 194-6 L6: Timing

!"#$%&'()*$$+,,-$$$).'/0$1

!"#$%&'&()*+#',$#-$./012
3.445+6)*+#'7/4&6+-+6$0#895)($12#6: .(6;+*&6*9(&<

!"#$%&'()*
!"#$%&'(!"#$%&')

Clock circuits live
in center column.

32 global clock
wires go down the
red column.

Also, 4 regional
clocks (restricted
functionality).

Any 10 may be
sent to a clock
region.

 Clocks have dedicated wires (low skew)

Spartan-3 FPGA Family: Functional Description

30 www.xilinx.com DS099-2 (v1.3) August 24, 2004
Preliminary Product Specification

40

R

width of the die. In turn, the horizontal spine branches
out into a subsidiary clock interconnect that accesses
the CLBs.

2. The clock input of either DCM on the same side of the
die — top or bottom — as the BUFGMUX element in
use.

A Global clock input is placed in a design using either a
BUFGMUX element or the BUFG (Global Clock Buffer) ele-
ment. For the purpose of minimizing the dynamic power dis-
sipation of the clock network, the Xilinx development
software automatically disables all clock line segments that
a design does not use.

Figure 18: Spartan-3 Clock Network (Top View)

4

4

4

4

4

4

4

8

8

4

4

88

Horizontal Spine

To
p

S
pi

ne
B

ot
to

m
 S

pi
ne

4

DCM DCM

DCM DCM

Array Dependent

Array Dependent

•

•

•

•

•

•

•

•

•

•

•

•

DS099-2_18_070203

4 BUFGMUX

GCLK2
GCLK3

GCLK0
GCLK1

4 BUFGMUX

GCLK6 GCLK4
GCLK7 GCLK5

From: Xilinx
Spartan 3 data
sheet. Virtex is
similar.

Die
photo:
Xilinx
Virtex

Gold
wires
are the
clock
tree.

UC Regents Fall 2008 © UCBCS 194-6 L6: Timing

!"#$%&'()*$$+,,-$$$).'/0$1

!"#$%&'&()*+#',$#-$./012
3.445+6)*+#'7/4&6+-+6$0#895)($12#6: .(6;+*&6*9(&<

!"#$%&'()*
!"#$%&'(!"#$%&')

LX110T:

12
Digital Clock
Managers (DCM)

6 Phase Locked
Loops (PLL)

20 Clock I/O Pads

DCM: Clock deskew, clock phasing

80 www.xilinx.com Virtex-5 FPGA User Guide
UG190 (v4.3) September 23, 2008

Chapter 2: Clock Management Technology
R

DCM Timing Models
The following timing diagrams describe the behavior of the DCM clock outputs under four
different conditions:

1. Reset/Lock

2. Fixed-Phase Shifting

3. Variable-Phase Shifting

4. Status Flags

Reset/Lock
In Figure 2-17, the DCM is already locked. After the reset signal is applied, all output
clocks are stabilized to the desired values, and the LOCKED signal is asserted.

! Prior to Clock Event 1

Prior to clock event 1, the DCM is locked. All clock outputs are in phase with the
correct frequency and behavior.

! Clock Event 1

Some time after clock event 1 the reset signal is asserted at the (RST) pin. While reset is
asserted, all clock outputs become a logic zero. The reset signal is an asynchronous
reset. Note: the diagram is not shown to scale. For the DCM to operate properly, the
reset signal must be asserted for at least three CLKIN periods.

! Clock Event 2

Clock event 2 occurs a few cycles after reset is asserted and deasserted. At clock event
2, the lock process begins. At time LOCK_DLL, after clock event 2, if no fixed phase

Figure 2-17: RESET/LOCK Example

CLKIN

RST

CLK0

CLK90

CLK180

CLKFX

CLKFX180

CLKDV

LOCKED

1 2

3 Periods

LOCK
DLL ug190_2_18_042406

46 www.xilinx.com Virtex-5 FPGA User Guide
UG190 (v4.3) September 23, 2008

Chapter 2: Clock Management Technology
R

DCM Primitives
The DCM primitives DCM_BASE and DCM_ADV are shown in Figure 2-2.

DCM_BASE Primitive
The DCM_BASE primitive accesses the basic frequently used DCM features and simplifies
the user-interface ports. The clock deskew, frequency synthesis, and fixed-phase shifting
features are available to use with DCM_BASE. Table 2-2 lists the available ports in the
DCM_BASE primitive.

Figure 2-2: DCM Primitives

CLKIN
CLKFB

RST

CLK0
CLK90

CLK180
CLK270

CLK2X
CLK2X180

CLKDV

CLKFX
CLKFX180

LOCKED

CLKIN
CLKFB

PSINCDEC
PSEN
PSCLK

DADDR[6:0]
DI[15:0]
DWE
DEN
DCLK

RST

CLK0
CLK90

CLK180
CLK270

CLK2X
CLK2X180

CLKDV

CLKFX
CLKFX180

LOCKED
PSDONE
DO[15:0]

DRDY

DCM_ADVDCM_BASE

ug190_2_02_042706

Table 2-2: DCM_BASE Primitive

Available Ports Port Names

Clock Input CLKIN, CLKFB

Control and Data Input RST

Clock Output CLK0, CLK90, CLK180, CLK270, CLK2X, CLK2X180, CLKDV,
CLKFX, CLKFX180

Status and Data Output LOCKED

DCM adjusts its output delay to synchronize the clock signal at the
feedback clock input (CLKFB) to the clock signal at the input clock (CLKIN).

Important use is in “deskewing” on-chip clock distribution relative to input
(board level) clock signal.

How it works: Delay-line feedback

Virtex-5 FPGA User Guide www.xilinx.com 71
UG190 (v4.3) September 23, 2008

Application Examples
R

Application Examples
The Virtex-5 FPGA DCM can be used in a variety of creative and useful applications. The
following examples show some of the more common applications.

Standard Usage
The circuit in Figure 2-8 shows DCM_BASE implemented with internal feedback and
access to RST and LOCKED pins. This example shows the simplest use case for a DCM.

Board-Level Clock Generation
The board-level clock generation example in Figure 2-9 illustrates how to use a DCM to
generate output clocks for other components on the board. This clock can then be used to
interface with other devices. In this example, a DDR register is used with its inputs
connected to GND and VCC. Because the output of the DCM is routed to BUFG, the clock
stays within global routing until it reaches the output register. The quality of the clock is
maintained.

The board-level clock generation example in Figure 2-10, with internal feedback, illustrates
the clock generation for a forwarded clock on the board.

Figure 2-8: Standard Usage

CLKIN
CLK0

CLK90
CLK180
CLK270
CLK2X

CLK2X180
CLKDV
CLKFX

CLKFX180

LOCKED

CLKFB

RST

IBUFG
DCM_BASE

IBUF

BUFG

OBUF

ug190_2_08_032506

Virtex-5 FPGA User Guide www.xilinx.com 59
UG190 (v4.3) September 23, 2008

DCM Design Guidelines
R

DCM Design Guidelines
This section provides a detailed description on using the Virtex-5 FPGA DCM and design
guidelines.

Clock Deskew
The Virtex-5 FPGA DCM offers a fully digital, dedicated, on-chip clock deskew. The
deskew feature provides zero propagation delay between the source clock and output
clock, low clock skew among output clock signals distributed throughout the device, and
advanced clock domain control.

The deskew feature also functions as a clock mirror of a board-level clock serving multiple
devices. This is achieved by driving the CLK0 output off-chip to the board (and to other
devices on the board) and then bringing the clock back in as a feedback clock. See the
“Application Examples” section. Taking advantage of the deskew feature greatly
simplifies and improves system-level design involving high-fanout, high-performance
clocks.

Clock Deskew Operation

The deskew feature utilizes the DLL circuit in the DCM. In its simplest form, the DLL
consists of a single variable delay line (containing individual small delay elements or
buffers) and control logic. The incoming clock drives the delay line. The output of every
delay element represents a version of the incoming clock (CLKIN) delayed at a different
point. The clock distribution network routes the clock to all internal registers and to the
clock feedback CLKFB pin. The control logic contains a phase detector and a delay-line
selector. The phase detector compares the incoming clock signal (CLKIN) against a
feedback input (CLKFB) and steers the delay-line selector, essentially adding delay to the
DCM output until the CLKIN and CLKFB coincide, putting the two clocks 360° out-of-
phase, (thus, in phase). When the edges from the input clock line up with the edges from
the feedback clock, the DCM achieves a lock. The two clocks have no discernible
difference. Thus, the DCM output clock compensates for the delay in the clock distribution
network, effectively removing the delay between the source clock and its loads. The size of
each intrinsic delay element is a DCM_TAP (see the AC Characteristics table in the Virtex-5
FPGA Data Sheet). Figure 2-3 illustrates a simplified DLL circuit.

To provide the correct clock deskew, the DCM depends on the dedicated routing and
resources used at the clock source and feedback input. An additional delay element (see
“Deskew Adjust”) is available to compensate for the clock source or feedback path. The
Xilinx ISE tools analyze the routing around the DCM to determine if a delay must be

Figure 2-3: Simplified DLL Circuit

Clock
Distribution

Network
Variable

Delay Line
CLKOUT

Control

CLKFB

CLKIN

ug190_2_03_032506

