EECS150 - Digital Design
Lecture 14 - Project Description,

Part 3

March 4, 2010
John Wawrzynek

Spring 2010 EECS150 - Lec14-proj3 Page 1

Verilog Memory Synthesis Notes

Block RAMS and LUT RAMS all exist as primitive library
elements (similar to FDRSE) and can be instantiated. However,
it is much more convenient to use inference.

Depending on how you write your verilog, you will get either a
collection of block RAMs, a collection of LUT RAMs, or a
collection of flip-flops.

The synthesizer uses size, and read style (synch versus asynch)
to determine the best primitive type to use.

It is possible to force mapping to a particular primitive by using
synthesis directives. However, if you write your verilog
correctly, you will not need to use directives.

The synthesizer has limited capabilities (eg., it can combine
primitives for more depth and width, but is limited on porting
options). Be careful, as you might not get what you want.

See Synplify User Guide, and XST User Guide for examples.

Spring 2010 EECS150 - Lec14-proj3 Page 2

Inferring RAMs in Veriloqg

// 64X1 RAM implementation using distributed RAM

module ram64X1 (clk, we, d, addr, q);

input clk, we, d;
input [5:0] addr;
output q;

always @ (posedge
if (we)
temp[addr]

clk)

<=4d;

Verilog reg array used with

“always @ (posedge ... infers

memory array.

Asynchronous read
infers LUT RAM

Multiple reference to
same array.

endmodule
Spring 2010 EECS150 - Lec14-proj3
Dual-read-port LUT RAM
//
// Multiple-Port RAM Descriptions
//
module v_rams_17 (clk, we, wa, ral, ra2, di, dol, do2);
input clk;
input we;
input [5:0] wa;
input [5:0] ral;
input [5:0] ra2;
input [15:0] di;
output [15:0] dol;
output [15:0] do2;
reg [15:0] ram [63:0];
always @ (posedge clk)
begin
if (we)
ram[wa] <= di;
end
""assign dol = ram[ral]; |-----------
 assign do2 = ram[ra2];
endmodule
Spring 2010 EECS150 - Lec14-proj3

Page 3

Page 4

Block RAM Inference
//

// Single-Port RAM with Synchronous Read
//
module v_rams_07 (clk, we, a, di, do);
input clk;
input we;
input [5:0] a;
input [15:0] di;
output [15:0] do;

reg [15:0] ram [63:0];
reg [5:0] read_a;
always @ (posedge clk) begin
if (we)
ram[a] <= di; Synchronous read
'read a <= a; | - (registered read address)
end""""'_' """""" ' infers Block RAM
assign do = ram[read_a];
endmodule
Spring 2010 EECS150 - Lec14-proj3 Page 5

Block RAM initialization

module RAMB4_S4 (data_out, ADDR, data_in, CLK, WE);
output[3:0] data_out;
input [2:0] ADDR;
input [3:0] data_in;
input CLK, WE;
reg [3:0] mem [7:0];
reg [3:0] read_addr;

initial .
“data.dat” contains initial RAM
‘$readmemb ("data.dat", mem): ... contents, it gets put into the bitfile

S AP and loaded at configuration time.
(Remake bits to change contents)

always@ (posedge CLK)
read_addr <= ADDR;

assign data_out = mem[read_addr];

always @ (posedge CLK)
if (WE) mem[ADDR] = data_in;

endmodule

Spring 2010 EECS150 - Lec14-proj3 Page 6

Dual-Port Block RAM

module test (dataO,datal,waddrO,waddrl,weO,wel,clkO, clkl, g0, ql);

parameter d_width = 8; parameter addr_width = 8; parameter mem_depth = 256;

input [d_width-1:0] dataO, datal;
input [addr_width-1:0] waddr0, waddrl;
input weO, wel, clkO, clkl;

reg [d_width-1:0] mem [mem_depth-1:0]
reg [addr_width-1:0] reg_waddr0, reg_waddrl;
output [d_width-1:0] qO0, ql;

assign qO0
assign ql

mem[reg_waddrO0];
mem[reg_waddrl];

always @(posedge clkO)
begin
if (weO)
mem[waddr0] <= dataO;
reg_waddr0 <= waddrO;
end

always @(posedge clkl)
begin
if (wel)
mem[waddrl] <= datal;
reg_waddrl <= waddrl;
end

endmodule

Spring 2010 EECS150 - Lec14-proj3 Page 7

First-in-first-out (FIFO) Memory

Used to implement queues. . Prc;]ducer can perforrr:fmany writes
, . without consumer performing an

These find common usein reads (or vis versaF)). Howe\?er, Y

computers and communication because of finite buffer size, on

circuits. average, need equal number of

Generally, used to “decouple” reads and writes.

actions of producer and consumer: * Typical uses:

— interfacing I/O devices.
stating state Example network interface.
Data bursts from network, then
c|bjaj— processor bursts to memory
buffer (or reads one word at a
after write time from interface).
Operations not synchronized.

dic|bja— — Example: Audio output.
Processor produces output
after read samples in bursts (during
process swap-in time). Audio
dic|bf— DAC clocks it out at constant
sample rate.

Spring 2010 EECS150 — Lec14-proj3 Page

FIFO Interfaces

| | + Address pointers are used internally

—1 Dy RST CLK to keep next write position and next

WE read position into a dual-port

FULL FIFO memory.

write ptr—]

~— EMPTY

RE <—read ptr

Dour » If pointers equal after write = FULL:

After write or read operation, FULL
and EMPTY indicate status of buffer.

Used by external logic to control write ptr—| <—read ptr
own reading from or writing to the If pointers equal after read = EMPTY:
buffer.

FIFO resets to EMPTY state. write ptr—) <— read ptr
HALF FULL (or other indicator of

partial fullness) is optional.

Spring 2010 EECS150 — Lec14-proj3 Page

FIFO Implementation Details

* Assume, dual-port memory with asynchronous read,
synchronous write.

e Binary counter for each of read and write address.
CEs (count enable) controlled by WE and RE.

» Equal comparator to see when pointers match.
 Flip-flop each for FULL and EMPTY flags:

WE RE equal EMPTY, FULL,

* Control logic (FSM) with

00 O 0 0

00 1 |emPTy.| FULL, truth-table shown to left.
01 0 0 0

01 1 1 0

10 0 0 0

10 1 0 1

11 0 0 0

11 1 |EMPTY,,|FULL,

Spring 2010 EECS150 — Lec14-proj3 Page

Xilinx Virtex5 FIFOs

* Virtex5 BlockRAMS include dedicated circuits for FIFOs.
 Details in User Guide (ug190).

» Takes advantage of separate dual ports and independent ports

clocks. ! i

|
WRCOUNT ~— waddy paddr |~ RDCOUNT

Write Block Read
Pointer RAM Pointer

20
ua)”waw
uam~ waw

DIN/DINP DO/DOP

WRCLK
WREN
RST

RDCLK

Status Flag RDEN

Logic

|

|
-]

|

|

|

|

|

|

|

L

TINd <
ALdWT <L

TIN4LSONTY
HY3ay =

HH3IHM

ALJWILSOWTY =1

Spring 2010 EECST50 ~ Lec145pro)3 ‘ Page

Processor Design Considerations (1/2)

Register File: Consider distributed RAM (LUT RAM)

- Size is close to what is needed: distributed RAM primitive
configurations are 32 or 64 bits deep. Extra width is easily
achieved by parallel arrangements.

- LUT-RAM configurations of fer multi-porting options - useful for
register files.

- Asynchronous read, might be useful by providing flexibility on where
to put register read in the pipeline.

Instruction / Data Memories : Consider Block RAM
- Higher density, lower cost for large number of bits
- Asingle 36kbit Block RAM implements 1K 32-bit words.

- Configuration stream based initialization, permits a simple "boot
strap” procedure.

+ Other Memories in Project? Ethernet? Video?

Spring 2010 EECS150 - Lec14-proj3 Page 12

Video Display

Pixel Array:
— Adigital image is represented by a matrix of
values where each value is a function of the Oja\
information surrounding the corresponding i
point in the image. A single element in an @i
image matrix is a picture element, or pixel.

— Apixel includes info for all color components
Common standard is 8 bits per color (Red,

. .
Green, Blue) Video Display

+ Pixel Array:
v © ﬂ

— The pixel array size (resolution) varies for " i
different applications, device, & costs, e.g. .
common value is 1024 X 768 pixels.

2 1024 X 768

Frames:

The illusion of motion is created by successively
flashing still pictures called frames. Frame
rates vary depending on application. Usually in
range of 25-75 fps. We will use 75 fps (frames
per second).

eated by s

Spring 2010 EECS150 - Lec14-proj3 Page 13

Video Display

Images are generated on the screen of

the display device by “drawing” or NN >
scanning each line of the image one *-:;:::::::::: E
after another, usually from top to e —
bottom. e
Ear‘ly display devices [CRTs]) requweq -:::::‘:;;::: %
time to get from the end of a scan line RO
to the beginning of the next. Therefore R
each line of video consists of an active -::::::::::'_‘E

video portion and a horizontal blanking
interval interval.

A vertical blanking interval corresponds to the time to return from
the bottom to the top.

- In addition to the active (visible] lines of video, each frame includes a number of

non-visible lines in the vertical blanking interval.

Spring 2010 EECS150 - Lec14-proj3 Page 14

Video Display
Display Devices, CRTs, LCDs, PDP, etc.

- Devices come in a variety of native resolutions and
frame rates, and also are designed to accommodate
a wide range of resolutions and frame rates.

Pixels values are sent one at a time through either

an analog or digital interface. s
- Display devices have limited "persistence”,)
B
therefore frames must be repetitively sent, to _—
create a stable image. Display devices don't Samsung LCD with

typically store the image in memory. analog interface

Repetitively sending the image also allows motion.

For a typical resolution and frame rate:

Pixels per frame = 1024 X 768 = 786,432
Pixel rate = 75fps X 786432 = 58,982,400 pixels/sec

Note: in this example, we use a pixel clock rate of
78.75 MHz to account for blanking intervals

Spring 2010 EECS150 - Lec14-proj3 Page 15

“Framebuffer” HW/SW Interface

A range of memory addresses correspond to the display.

CPU writes (using sw instruction) pixel values to change display.

No synchronization required. Independent process reads pixels from
memory and sends them to the display interface at the required rate.

CPU address map Ex: 1024 pixels/line X 768 lines

OXFFFFFFFF

OXB03FFFFC e oy ot
isplay Origin:

0x80000000 | Puffer tozs,7en)| Increasing X

values to the
right. Increasing
Y values down.

Spring 2010 EECS150 - Lec14-proj3 Page 16

Framebuffer Implementation

* Framebuffer is a simple dual-ported memory.
Two independent processes access framebuffer:
Video Interface

continuously reads
pixel locations in

CPU writes pixel
locations. Could be
in random order, e.g.
drawing an object, scan-line order and
or sequentially, e.g. sends to physical
clearing the screen. display.

* How big is this memory and how do we implement
it?
1024 x 768 pixels/frame x 24 bits/pixel

Spring 2010 EECS150 - Lec14-proj3 Page 17

Framebuffer Details last year

One pixel value per memory location.

MIPS address map 768 lines, 1K pixels/line =786,432

P memory
OxFFFFFFFF % 1K locations

0x803FFFFC E— 1K Virtex-5 LX110'!' .

ST memory .capamty.
0x80000000 1K 5,328 Kbits (in block
1K RAMSs).
(5,328 X 1024 bits) / 786432 =
6.9 bits/pixel max!
0

We choose 4 bits/pixel

Note, that with only 4 bits/pixel, we could assign more than one pixel
per memory location. Ruled out by us, as it complicated software.

Spring 2010 EECS150 - Lec14-proj3 Page 18

Color Map

4 bits per pixel, allows software to assign each screen location, one of
16 different colors.

However, physical display interface uses 8 bits / pixel-color.
Therefore entire pallet is 224 colors.

Color Map converts 4 bit pixel values to 24 bit colors.
«— 24 bits —

pixel color
to video
interface

pixel value from
framebuffer

16 entries

Color map is memory mapped to CPU address space, so software can
set the color table. Addresses: 0x8040 0000 0x8040 003C, one
24-bit entry per memory address.

Spring 2010 EECS150 - Lec14-proj3 Page 19

XUP Board External SRAM

PC4

(0]
| & "ZBT" synchronous
= Host
o, s Logo s || T oEemcE conmoter [e SRAM. 9 Mb on

2 g , i~
M Platf ’:JFI n = RJ45 32 bl-r daTa busl
as atform Flas! . \)
Gl =2 with four “parity”
SO-DIMM

=] + Digital Audio blTS
| I .
I e | 256K x 36 bifs
2l T
Piezo/Speaker & 8853 || fe MicIn/Line (IOCO"'ed under the

=

II

. VGA Input
PLL Clock Generator -)
Plus User Oscillator J—m r‘emOVGble LCD
OVI Qutput DVI-1 Video Out

System Monitor Codec

SMA LX¥/§)?1(:/2XT - Serel
(Differential I/Out Clocks) FPGA *ZBT (ZBT stands for zero bus
Fan Header turnaround) — the turnaround is

Dual PSf2
16 X 32 .
Character LCD the number of clock cycles it

GTP:2 Serial ATA g User IC Bus takes to change access to the
SRAM from write to read and
vice versa. The turnaround for
GTP: 4 SFP ZBT SRAMs or the latency
between read and write cycle is
GTP: PCle 1x mz,,er,?,', . Page 20

GTP: 4 SMA [xcl Header | [ic eepROM |

i

IS61NLP25636A/IS61NVP25636A
IS61NLP51218A/IS61NVP51218A

1ss1

256K

x 36 and 512K x 18

9Mb, PIPELINE 'NO WAIT' STATE BUS

SRAM

BLOCK DIAGRAM

MARCH 2008

PIN DESCRIPTIONS

x 36: A[0:17] or ADDRESS

A2-A17 or A2-A18

x18: A[0:18] REGISTER

MODE =

A0-A1

BURST
ADDRESS
COUNTER

A0-A"

WRITE
ADDRESS
REGISTER

CONTROL
LOGIC |K

WRITE
ADDRESS
| REGISTER

= \

CONTROL
REGISTER

256Kx36;
512Kx18

MEMORY ARRAY

DATA-IN
REGISTER

K

DATA-IN

CONTROL
LOGIC

=

OUTPUT
REGISTER

BUFFER

36 or 18

|

DQx/DQPx

Spring 2010

A0, A1 Synchronous Address Inputs. These
pins must tied to the two LSBs of the
address bus.

A Synchronous Address Inputs

CLK Synchronous Clock

ADV Synchronous Burst Address Advance

BWa-BWd Synchronous Byte Write Enable

WE Write Enable

CKE Clock Enable

Vss GroundforCore

NC Not Connected

CE, CE2,CE2 Synchronous Chip Enable

OE Output Enable

DQa-DQd Synchronous Data Input/Output

DQPa-DQPd Parity Data I/0O

MODE Burst Sequence Selection

Vop +3.3V/2.5V Power Supply

Vss Ground for output Buffer

Voba Isolated Output Buffer Supply: +3.3V/2.5V

Y4 Snooze Enable

What frame buffer configuration is possible?

Page 21

Memory Mapped Framebuffer

A range of memory addresses correspond to the display.

+ CPU writes (using sw instruction) pixel values to change display.

* No handshaking required. Independent process reads pixels from
memory and sends them to the display interface at the required rate.

MIPS address map

OXFFFFFFFF

0x801D4BFC
0x80000000

Frame
buffer

Spring 2010

EECS150 - Lec14-proj3

800 pixels/line X 600 lines

Display Origin:
Increasing X
values to the
right. Increasing
Y values down.

Page 22

Framebuffer Details

One pixel value per memory location.

MIPS address map 600 lines, 800 pixels/line = 480,000

. memory
0x801D4BFCI Erame 800 XUP SRAM -
B memory c;apamty.
0x80000000 800 ~8 Mbits (in external
\\‘ - 800 SRAMS)-
8Mbits / 480000 = 17.5 bits/pixel max!

0 We choose 16 bits/pixel
{ Red[4:0] ; Green[5:0] ; Blue[4:0] }

Note, that we assign only one 16 bit pixel per memory location.
Two pixel address map to one address in the SRAM (it is 32bits wide).

Spring 2010 EECS150 - Lec14-proj3 Page 23

MIPS150 Video Subsystem

XUPV5 Board
FPGA Chip
InStrUCtion
Memory :
‘|:| serial In\tltla(:feaoce
Interface
MIPS CPU
|:| Ethernet 2-D
Interface :| Graphics
Data i | Accelerator 5
Memory RSN SR g

» Gives software ability to display information on screen.
e Equivalent to standard graphics cards:
* Processor can directly write the display bit map

e 2D Graphics acceleration
Spring 2010 EECS150 - Lec14-proj3 Page 24

DVI connector:
accommodates

analog and =
digital formats \]

DVI Transmitter Chip, Chrontel 7301C.

XCLKXCLK® 2 Qlock VI PLL 2 memes
’ T T o lt.nune Implements standard
[Enode | Serdize | Drver | |2, poumher . li [I [
oot —{ om |, o signhaling voltage levels
o -] nc Decode o M N
T L S e .. forvideo monitors.
conversion 106t ———> DACI ..
woesHfovee] e i Digital to analog
Latch
Lf BT conversion for GﬂGlOg
) f—— HSYNC .
’ Serial Port Control VSYNC dl5p|ay for‘ma-rs_
T T
HPDET GPIOIIDJ AS SIL SPD RESET*
Spring 2010 EECS150 - Lec14-proj3 Page 25

Video Interface

CPU
L

Frame Buffer

FPGA Video

Interface

Frame Buffer: provides a

memory mapped programming

interface to video display.
You do!

DVI Output
——

Video Interface Block:
accepts pixel values from
FB, streams pixels values
and control signals to

physical device.
We do! Page 26

