
Spring 2010 EECS150 - Lec14-proj3 Page

EECS150 - Digital Design
Lecture 14 - Project Description,

Part 3

March 4, 2010
John Wawrzynek

1

Spring 2010 EECS150 - Lec14-proj3 Page

Verilog Memory Synthesis Notes
• Block RAMS and LUT RAMS all exist as primitive library

elements (similar to FDRSE) and can be instantiated. However,
it is much more convenient to use inference.

• Depending on how you write your verilog, you will get either a
collection of block RAMs, a collection of LUT RAMs, or a
collection of flip-flops.

• The synthesizer uses size, and read style (synch versus asynch)
to determine the best primitive type to use.

• It is possible to force mapping to a particular primitive by using
synthesis directives. However, if you write your verilog
correctly, you will not need to use directives.

• The synthesizer has limited capabilities (eg., it can combine
primitives for more depth and width, but is limited on porting
options). Be careful, as you might not get what you want.

• See Synplify User Guide, and XST User Guide for examples.
2

Spring 2010 EECS150 - Lec14-proj3 Page

Inferring RAMs in Verilog

3

 // 64X1 RAM implementation using distributed RAM

 module ram64X1 (clk, we, d, addr, q);
input clk, we, d;
input [5:0] addr;
output q;

 reg [63:0] temp;
 always @ (posedge clk)

if(we)
 temp[addr] <= d;

 assign q = temp[addr];

 endmodule

Asynchronous read
infers LUT RAM

Verilog reg array used with
“always @ (posedge ... infers

memory array.

Spring 2010 EECS150 - Lec14-proj3 Page

Dual-read-port LUT RAM

4

//
// Multiple-Port RAM Descriptions
//
module v_rams_17 (clk, we, wa, ra1, ra2, di, do1, do2);
 input clk;
 input we;
 input [5:0] wa;
 input [5:0] ra1;
 input [5:0] ra2;
 input [15:0] di;
 output [15:0] do1;
 output [15:0] do2;
 reg [15:0] ram [63:0];
 always @(posedge clk)
 begin
 if (we)
 ram[wa] <= di;
 end
 assign do1 = ram[ra1];
 assign do2 = ram[ra2];
endmodule

Multiple reference to
same array.

Spring 2010 EECS150 - Lec14-proj3 Page

Block RAM Inference

5

//
// Single-Port RAM with Synchronous Read
//
module v_rams_07 (clk, we, a, di, do);
 input clk;
 input we;
 input [5:0] a;
 input [15:0] di;
 output [15:0] do;
 reg [15:0] ram [63:0];
 reg [5:0] read_a;
 always @(posedge clk) begin
 if (we)
 ram[a] <= di;
 read_a <= a;
 end
 assign do = ram[read_a];
endmodule

Synchronous read
(registered read address)

infers Block RAM

Spring 2010 EECS150 - Lec14-proj3 Page

Block RAM initialization

6

module RAMB4_S4 (data_out, ADDR, data_in, CLK, WE);
 output[3:0] data_out;
 input [2:0] ADDR;
 input [3:0] data_in;
 input CLK, WE;
 reg [3:0] mem [7:0];
 reg [3:0] read_addr;

 initial
 begin
 $readmemb("data.dat", mem);
 end

 always@(posedge CLK)
 read_addr <= ADDR;

 assign data_out = mem[read_addr];

 always @(posedge CLK)
 if (WE) mem[ADDR] = data_in;

 endmodule

“data.dat” contains initial RAM
contents, it gets put into the bitfile
and loaded at configuration time.
(Remake bits to change contents)

Spring 2010 EECS150 - Lec14-proj3 Page

Dual-Port Block RAM

7

module test (data0,data1,waddr0,waddr1,we0,we1,clk0, clk1, q0, q1);

 parameter d_width = 8; parameter addr_width = 8; parameter mem_depth = 256;

 input [d_width-1:0] data0, data1;
 input [addr_width-1:0] waddr0, waddr1;
 input we0, we1, clk0, clk1;

 reg [d_width-1:0] mem [mem_depth-1:0]
 reg [addr_width-1:0] reg_waddr0, reg_waddr1;
 output [d_width-1:0] q0, q1;

 assign q0 = mem[reg_waddr0];
 assign q1 = mem[reg_waddr1];

 always @(posedge clk0)
 begin
 if (we0)
 mem[waddr0] <= data0;
 reg_waddr0 <= waddr0;
 end

 always @(posedge clk1)
 begin
 if (we1)
 mem[waddr1] <= data1;
 reg_waddr1 <= waddr1;
 end

 endmodule

Spring 2010 EECS150 – Lec14-proj3 Page

First-in-first-out (FIFO) Memory
• Used to implement queues.
• These find common use in

computers and communication
circuits.

• Generally, used to “decouple”
actions of producer and consumer:

• Producer can perform many writes
without consumer performing any
reads (or vis versa). However,
because of finite buffer size, on
average, need equal number of
reads and writes.

• Typical uses:
– interfacing I/O devices.

Example network interface.
Data bursts from network, then
processor bursts to memory
buffer (or reads one word at a
time from interface).
Operations not synchronized.

– Example: Audio output.
Processor produces output
samples in bursts (during
process swap-in time). Audio
DAC clocks it out at constant
sample rate.

stating state

after write

after read

abc

abcd

bcd

Spring 2010 EECS150 – Lec14-proj3 Page

FIFO Interfaces

• After write or read operation, FULL
and EMPTY indicate status of buffer.

• Used by external logic to control
own reading from or writing to the
buffer.

• FIFO resets to EMPTY state.
• HALF FULL (or other indicator of

partial fullness) is optional.

• Address pointers are used internally
to keep next write position and next
read position into a dual-port
memory.

• If pointers equal after write ⇒ FULL:

• If pointers equal after read ⇒ EMPTY:

DIN

DOUT

WE

RE
EMPTY

FULL
HALF FULL

RST CLK

FIFO
write ptr

read ptr

write ptr read ptr

write ptr read ptr

Spring 2010 EECS150 – Lec14-proj3 Page

FIFO Implementation Details

 WE RE equal EMPTYi FULLi

 0 0 0 0 0
 0 0 1 EMPTYi-1 FULLi-1

 0 1 0 0 0
 0 1 1 1 0
 1 0 0 0 0
 1 0 1 0 1
 1 1 0 0 0
 1 1 1 EMPTYi-1 FULLi-1

• Assume, dual-port memory with asynchronous read,
synchronous write.

• Binary counter for each of read and write address.
CEs (count enable) controlled by WE and RE.

• Equal comparator to see when pointers match.
• Flip-flop each for FULL and EMPTY flags:

 • Control logic (FSM) with

truth-table shown to left.

Spring 2010 EECS150 – Lec14-proj3 Page

Xilinx Virtex5 FIFOs
• Virtex5 BlockRAMS include dedicated circuits for FIFOs.
• Details in User Guide (ug190).
• Takes advantage of separate dual ports and independent ports

clocks.

Spring 2010 EECS150 - Lec14-proj3 Page

Processor Design Considerations (1/2)
• Register File: Consider distributed RAM (LUT RAM)

– Size is close to what is needed: distributed RAM primitive
configurations are 32 or 64 bits deep. Extra width is easily
achieved by parallel arrangements.

– LUT-RAM configurations offer multi-porting options - useful for
register files.

– Asynchronous read, might be useful by providing flexibility on where
to put register read in the pipeline.

• Instruction / Data Memories : Consider Block RAM
– Higher density, lower cost for large number of bits
– A single 36kbit Block RAM implements 1K 32-bit words.
– Configuration stream based initialization, permits a simple “boot

strap” procedure.

• Other Memories in Project? Ethernet? Video?
12

Spring 2010 EECS150 - Lec14-proj3 Page

Video Display
• Pixel Array:

– A digital image is represented by a matrix of
values where each value is a function of the
information surrounding the corresponding
point in the image. A single element in an
image matrix is a picture element, or pixel.

– A pixel includes info for all color components.
Common standard is 8 bits per color (Red,
Green, Blue)

– The pixel array size (resolution) varies for
different applications, device, & costs, e.g.
common value is 1024 X 768 pixels.

13

• Frames:
– The illusion of motion is created by successively

flashing still pictures called frames. Frame
rates vary depending on application. Usually in
range of 25-75 fps. We will use 75 fps (frames
per second).

Spring 2010 EECS150 - Lec14-proj3 Page

Video Display

14

• A vertical blanking interval corresponds to the time to return from
the bottom to the top.

– In addition to the active (visible) lines of video, each frame includes a number of
non-visible lines in the vertical blanking interval.

• Images are generated on the screen of
the display device by “drawing” or
scanning each line of the image one
after another, usually from top to
bottom.

• Early display devices (CRTs) required
time to get from the end of a scan line
to the beginning of the next. Therefore
each line of video consists of an active
video portion and a horizontal blanking
interval interval.

Spring 2010 EECS150 - Lec14-proj3 Page

Video Display
• Display Devices, CRTs, LCDs, PDP, etc.

– Devices come in a variety of native resolutions and
frame rates, and also are designed to accommodate
a wide range of resolutions and frame rates.

– Pixels values are sent one at a time through either
an analog or digital interface.

– Display devices have limited “persistence”,
therefore frames must be repetitively sent, to
create a stable image. Display devices don’t
typically store the image in memory.

– Repetitively sending the image also allows motion.
– For a typical resolution and frame rate:

15

Pixel rate = 75fps X 786432 = 58,982,400 pixels/sec
Pixels per frame = 1024 X 768 = 786,432

Note: in this example, we use a pixel clock rate of
78.75 MHz to account for blanking intervals

Samsung LCD with
analog interface.

Spring 2010 EECS150 - Lec14-proj3 Page

“Framebuffer” HW/SW Interface
• A range of memory addresses correspond to the display.
• CPU writes (using sw instruction) pixel values to change display.
• No synchronization required. Independent process reads pixels from

memory and sends them to the display interface at the required rate.

0

0xFFFFFFFF
CPU address map

16

Ex: 1024 pixels/line X 768 lines

0x80000000

0x803FFFFC Frame
buffer Display Origin:

Increasing X
values to the
right. Increasing
Y values down.

(0,0)

(1023, 767)

Spring 2010 EECS150 - Lec14-proj3 Page

Framebuffer Implementation
• Framebuffer is a simple dual-ported memory.

Two independent processes access framebuffer:

17

CPU writes pixel
locations. Could be

in random order, e.g.
drawing an object,

or sequentially, e.g.
clearing the screen.

Video Interface
continuously reads
pixel locations in
scan-line order and
sends to physical
display.

• How big is this memory and how do we implement
it?
 1024 x 768 pixels/frame x 24 bits/pixel

Frame
buffer

Spring 2010 EECS150 - Lec14-proj3 Page

Framebuffer Details last year
• One pixel value per memory location.

18

Virtex-5 LX110T
memory capacity:
5,328 Kbits (in block
RAMs).

0

0xFFFFFFFF
MIPS address map 768 lines, 1K pixels/line

0x80000000

0x803FFFFC Frame
buffer

1K
1K
1K

1K
...

• Note, that with only 4 bits/pixel, we could assign more than one pixel
per memory location. Ruled out by us, as it complicated software.

= 786,432
memory
locations

(5,328 X 1024 bits) / 786432 =
6.9 bits/pixel max!

We choose 4 bits/pixel

Spring 2010 EECS150 - Lec14-proj3 Page

Color Map

19

4 bits per pixel, allows software to assign each screen location, one of
16 different colors.

However, physical display interface uses 8 bits / pixel-color.
Therefore entire pallet is 224 colors.

Color map is memory mapped to CPU address space, so software can
set the color table. Addresses: 0x8040_0000 0x8040_003C, one
24-bit entry per memory address.

R G B
R G B
R G B

R G B
...

24 bits

16 entries

pixel value from
framebuffer

pixel color
to video
interface

Color Map converts 4 bit pixel values to 24 bit colors.

Spring 2010 EECS150 - Lec14-proj3 Page

XUP Board External SRAM

20

More generally, how does software
interface to I/O devices?

*ZBT (ZBT stands for zero bus
turnaround) — the turnaround is
the number of clock cycles it
takes to change access to the
SRAM from write to read and
vice versa. The turnaround for
ZBT SRAMs or the latency
between read and write cycle is
zero.

“ZBT” synchronous
SRAM, 9 Mb on
32-bit data bus,
with four “parity”
bits
256K x 36 bits
(located under the
removable LCD)

Spring 2010 EECS150 - Lec14-proj3 Page 21

Integrated Silicon Solution, Inc. — www.issi.com — 1-800-379-4774 1
Rev. F
03/27/08

IS61NLP25636A/IS61NVP25636A
IS61NLP51218A/IS61NVP51218A

Copyright © 2006 Integrated Silicon Solution, Inc. All rights reserved. ISSI reserves the right to make changes to this specification and its products at any time without notice. ISSI assumes no liability
arising out of the application or use of any information, products or services described herein. Customers are advised to obtain the latest version of this device specification before relying on any
published information and before placing orders for products.

FEATURES

• 100 percent bus utilization

• No wait cycles between Read and Write

• Internal self-timed write cycle

• Individual Byte Write Control

• Single R/W (Read/Write) control pin

• Clock controlled, registered address,
data and control

• Interleaved or linear burst sequence control using
MODE input

• Three chip enables for simple depth expansion
and address pipelining

• Power Down mode

• Common data inputs and data outputs

• CKE pin to enable clock and suspend operation

• JEDEC 100-pin TQFP, 165-ball PBGA and 119-
ball PBGA packages

• Power supply:
NVP: VDD 2.5V (± 5%), VDDQ 2.5V (± 5%)
NLP: VDD 3.3V (± 5%), VDDQ 3.3V/2.5V (± 5%)

• JTAG Boundary Scan for PBGA packages

• Industrial temperature available

• Lead-free available

DESCRIPTION

The 9 Meg 'NLP/NVP' product family feature high-speed,
low-power synchronous static RAMs designed to provide
a burstable, high-performance, 'no wait' state, device for
networking and communications applications. They are
organized as 256K words by 36 bits and 512K words by 18
bits, fabricated with ISSI's advanced CMOS technology.

Incorporating a 'no wait' state feature, wait cycles are
eliminated when the bus switches from read to write, or
write to read. This device integrates a 2-bit burst counter,
high-speed SRAM core, and high-drive capability outputs
into a single monolithic circuit.

All synchronous inputs pass through registers are controlled
by a positive-edge-triggered single clock input. Operations
may be suspended and all synchronous inputs ignored
when Clock Enable, CKE is HIGH. In this state the internal
device will hold their previous values.

All Read, Write and Deselect cycles are initiated by the
ADV input. When the ADV is HIGH the internal burst
counter is incremented. New external addresses can be
loaded when ADV is LOW.

Write cycles are internally self-timed and are initiated by
the rising edge of the clock inputs and when WE is LOW.
Separate byte enables allow individual bytes to be written.

 A burst mode pin (MODE) defines the order of the burst
sequence. When tied HIGH, the interleaved burst sequence
is selected. When tied LOW, the linear burst sequence is
selected.

256K x 36 and 512K x 18
9Mb, PIPELINE 'NO WAIT' STATE BUS
SRAM

MARCH 2008

FAST ACCESS TIME

Symbol Parameter -250 -200 Units
tKQ Clock Access Time 2.6 3.1 ns
tKC Cycle Time 4 5 ns

Frequency 250 200 MHz

8 Integrated Silicon Solution, Inc. — www.issi.com — 1-800-379-4774
Rev. F

03/27/08

IS61NLP25636A/IS61NVP25636A
IS61NLP51218A/IS61NVP51218A

PIN CONFIGURATION
100-Pin TQFP

512K x 18

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30

80
79
78
77
76
75
74
73
72
71
70
69
68
67
66
65
64
63
62
61
60
59
58
57
56
55
54
53
52
51

100 99 98 97 96 95 94 93 92 91 90 89 88 87 86 85 84 83 82 81

31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50

A

NC

NC

VDDQ

Vss

NC
DQPa

DQa

DQa

Vss

VDDQ

DQa

DQa
Vss
NC
VDD

ZZ

DQa

DQa

VDDQ

Vss

DQa

DQa

NC
NC

Vss

VDDQ

NC
NC
NC

NC

NC

NC

VDDQ

Vss

NC
NC

DQb

DQb

Vss

VDDQ

DQb

DQb
NC

VDD

NC
Vss

DQb

DQb

VDDQ

Vss
DQb

DQb

DQPb
NC

Vss

VDDQ

NC
NC
NC

A A C
E

C
E

2

N
C

N
C
B
W
b

B
W
a

C
E
2

V
D

D

V
ss

C
LK
W
E

C
K
E

O
E

A
D

V
N

C

A A A

M
O

D
E A A A A A
1

A
0

N
C

N
C

V
ss

V
D

D

N
C

N
C A A A A A A A

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30

80
79
78
77
76
75
74
73
72
71
70
69
68
67
66
65
64
63
62
61
60
59
58
57
56
55
54
53
52
51

100 99 98 97 96 95 94 93 92 91 90 89 88 87 86 85 84 83 82 81

31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50

DQPb

DQb

DQb

VDDQ

Vss

DQb
DQb

DQb

DQb

Vss

VDDQ

DQb

DQb
Vss
NC
VDD

ZZ

DQa

DQa

VDDQ

Vss

DQa

DQa

DQa
DQa
Vss

VDDQ

DQa
DQa
DQPa

DQPc

DQc

DQc

VDDQ

Vss

DQc
DQc

DQc

DQc

Vss

VDDQ

DQc

DQc
NC

VDD

NC

Vss

DQd

DQd

VDDQ

Vss
DQd

DQd

DQd
DQd
Vss

VDDQ

DQd
DQd

DQPd

A

A C
E

C
E

2

B
W
d

B
W
c

B
W
b

B
W
a

C
E
2

V
D

D

V
ss

C
LK
W
E

C
K
E

O
E

A
D

V
N

C

A A A

M
O

D
E A A A A A
1

A
0

N
C

N
C

V
ss

V
D

D

N
C

N
C A A A A A A A

256K x 36

PIN DESCRIPTIONS

A0, A1 Synchronous Address Inputs. These
pins must tied to the two LSBs of the
address bus.

A Synchronous Address Inputs

CLK Synchronous Clock

ADV Synchronous Burst Address Advance

BWa-BWd Synchronous Byte Write Enable

WE Write Enable

CKE Clock Enable

Vss Ground for Core

NC Not Connected

CE, CE2, CE2 Synchronous Chip Enable

OE Output Enable

DQa-DQd Synchronous Data Input/Output

DQPa-DQPd Parity Data I/O

MODE Burst Sequence Selection

VDD +3.3V/2.5V Power Supply

VSS Ground for output Buffer

VDDQ Isolated Output Buffer Supply: +3.3V/2.5V

ZZ Snooze Enable

8 Integrated Silicon Solution, Inc. — www.issi.com — 1-800-379-4774
Rev. F

03/27/08

IS61NLP25636A/IS61NVP25636A
IS61NLP51218A/IS61NVP51218A

PIN CONFIGURATION
100-Pin TQFP

512K x 18

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30

80
79
78
77
76
75
74
73
72
71
70
69
68
67
66
65
64
63
62
61
60
59
58
57
56
55
54
53
52
51

100 99 98 97 96 95 94 93 92 91 90 89 88 87 86 85 84 83 82 81

31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50

A

NC

NC

VDDQ

Vss

NC
DQPa

DQa

DQa

Vss

VDDQ

DQa

DQa
Vss
NC
VDD

ZZ

DQa

DQa

VDDQ

Vss

DQa

DQa

NC
NC

Vss

VDDQ

NC
NC
NC

NC

NC

NC

VDDQ

Vss

NC
NC

DQb

DQb

Vss

VDDQ

DQb

DQb
NC

VDD

NC
Vss

DQb

DQb

VDDQ

Vss
DQb

DQb

DQPb
NC

Vss

VDDQ

NC
NC
NC

A A C
E

C
E

2

N
C

N
C
B
W
b

B
W
a

C
E
2

V
D

D

V
ss

C
LK
W
E

C
K
E

O
E

A
D

V
N

C

A A A

M
O

D
E A A A A A
1

A
0

N
C

N
C

V
ss

V
D

D

N
C

N
C A A A A A A A

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30

80
79
78
77
76
75
74
73
72
71
70
69
68
67
66
65
64
63
62
61
60
59
58
57
56
55
54
53
52
51

100 99 98 97 96 95 94 93 92 91 90 89 88 87 86 85 84 83 82 81

31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50

DQPb

DQb

DQb

VDDQ

Vss

DQb
DQb

DQb

DQb

Vss

VDDQ

DQb

DQb
Vss
NC
VDD

ZZ

DQa

DQa

VDDQ

Vss

DQa

DQa

DQa
DQa
Vss

VDDQ

DQa
DQa
DQPa

DQPc

DQc

DQc

VDDQ

Vss

DQc
DQc

DQc

DQc

Vss

VDDQ

DQc

DQc
NC

VDD

NC

Vss

DQd

DQd

VDDQ

Vss
DQd

DQd

DQd
DQd
Vss

VDDQ

DQd
DQd

DQPd

A

A C
E

C
E

2

B
W
d

B
W
c

B
W
b

B
W
a

C
E
2

V
D

D

V
ss

C
LK
W
E

C
K
E

O
E

A
D

V
N

C

A A A

M
O

D
E A A A A A
1

A
0

N
C

N
C

V
ss

V
D

D

N
C

N
C A A A A A A A

256K x 36

PIN DESCRIPTIONS

A0, A1 Synchronous Address Inputs. These
pins must tied to the two LSBs of the
address bus.

A Synchronous Address Inputs

CLK Synchronous Clock

ADV Synchronous Burst Address Advance

BWa-BWd Synchronous Byte Write Enable

WE Write Enable

CKE Clock Enable

Vss Ground for Core

NC Not Connected

CE, CE2, CE2 Synchronous Chip Enable

OE Output Enable

DQa-DQd Synchronous Data Input/Output

DQPa-DQPd Parity Data I/O

MODE Burst Sequence Selection

VDD +3.3V/2.5V Power Supply

VSS Ground for output Buffer

VDDQ Isolated Output Buffer Supply: +3.3V/2.5V

ZZ Snooze Enable

2 Integrated Silicon Solution, Inc. — www.issi.com — 1-800-379-4774
Rev. F

03/27/08

IS61NLP25636A/IS61NVP25636A
IS61NLP51218A/IS61NVP51218A

BLOCK DIAGRAM

ADV
WE }
BWŸX
(X=a,b,c,d or a,b)

CE

CE2

CE2

CONTROL
LOGIC

256Kx36;
512Kx18

MEMORY ARRAY

WRITE
ADDRESS
REGISTER

WRITE
ADDRESS
REGISTER

CONTROL
LOGIC

OUTPUT
REGISTER

BUFFER

ADDRESS
REGISTER

x 36: A [0:17] or
x 18: A [0:18]

CLK

CKE

 A2-A17 or A2-A18

A0-A1 A'0-A'1

BURST
ADDRESS
COUNTER

MODE

DATA-IN
REGISTER

DATA-IN
REGISTER

CONTROL
REGISTER

OE
ZZ

36 or 18

K

K

DQx/DQPx

K

K

What frame buffer configuration is possible?

Spring 2010 EECS150 - Lec14-proj3 Page

Memory Mapped Framebuffer
• A range of memory addresses correspond to the display.
• CPU writes (using sw instruction) pixel values to change display.
• No handshaking required. Independent process reads pixels from

memory and sends them to the display interface at the required rate.

0

0xFFFFFFFF
MIPS address map

22

800 pixels/line X 600 lines

0x80000000

0x801D4BFC Frame
buffer Display Origin:

Increasing X
values to the
right. Increasing
Y values down.

(0,0)

(800, 600)

Spring 2010 EECS150 - Lec14-proj3 Page

Framebuffer Details
• One pixel value per memory location.

23

XUP SRAM
memory capacity:
~8 Mbits (in external
SRAMs).

0

0xFFFFFFFF
MIPS address map 600 lines, 800 pixels/line

0x80000000

0x801D4BFC Frame
buffer

800
800
800

800
...

• Note, that we assign only one 16 bit pixel per memory location.
• Two pixel address map to one address in the SRAM (it is 32bits wide).

= 480,000
memory
locations

8Mbits / 480000 = 17.5 bits/pixel max!

We choose 16 bits/pixel
{ Red[4:0] ; Green[5:0] ; Blue[4:0] }

Spring 2010 EECS150 - Lec14-proj3 Page

MIPS150 Video Subsystem

24

• Gives software ability to display information on screen.
• Equivalent to standard graphics cards:

• Processor can directly write the display bit map
• 2D Graphics acceleration

Spring 2010 EECS150 - Lec14-proj3 Page

Physical Video Interface

25

DVI connector:
accommodates
analog and
digital formats

DVI Transmitter Chip, Chrontel 7301C.

Implements standard
signaling voltage levels
for video monitors.
Digital to analog
conversion for analog
display formats.

Spring 2010 EECS150 - Lec14-proj3 Page

Video Interface

26

More generally, how does software
interface to I/O devices?

Video Interface Block:
accepts pixel values from
FB, streams pixels values
and control signals to
physical device.

Frame Buffer: provides a
memory mapped programming
interface to video display.

You do!

We do!

CPU

Video
Interface

 Frame Buffer

FPGA

