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EECS 150 -- Digital Design
Lecture 11-- Processor Pipelining

www-inst.eecs.berkeley.edu/~cs150

Today’s lecture by John Lazzaro
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Today: Pipelining
How to apply the performance 
equation to our single-cycle CPU. 

Why pipelining is hard: data hazards,
control hazards, structural hazards.

Pipelining: an idea from assembly
line production applied to CPU design

Visualizing pipelines to evaluate
hazard detection and resolution.

A tool kit for hazard resolution.
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New successful instruction sets are rare

instruction set

software

hardware

Implementors suffer with original sins of ISAs, 
to support the installed base of software.
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define: The Architect’s Contract
To the program, it appears that 
instructions execute in the correct 
order defined by the ISA.

What the machine actually does is 
up to the hardware designers, as 
long as the contract is kept.

As each instruction completes, the
machine state (regs, mem) appears to 
the program to obey the ISA.

Goal: Keep contract and run programs faster.
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Performance Measurement
(as seen by a CPU designer)

Q. Why do we care about a program’s performance?

A. We want the CPU we are designing to run it well !
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Step 1:  Analyze the right measurement!

CPU Time:
Time the CPU spends running 
program under measurement.

Response Time:

Total time:  CPU Time + time 
spent waiting (for disk, I/O, ...).

Guides 
CPU 
design

Guides 
system 
design

 Measuring CPU time (Unix):
% time <program name>
25.77u  0.72s  0:29.17 90.8% 
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   CPU time: Proportional to Instruction Count

CPU time
Program

Machine Instructions
Program

∝

Rationale:  Every 
additional 

instruction you 
execute takes time.

Q. How does an architect 
influence the number of 
machine instructions 
needed to run an algorithm?
A. Create new instructions:
instruction set architect.

Q. Static count?
(lines of program printout)
Or dynamic count? 
(trace of execution)

A. Dynamic.

Q. Once ISA is set, who 
can influence instruction
count?
A. Compiler writer,
application developer.
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   CPU time: Proportional to Clock Period

Time
Program

Time
One Clock Period

∝

Q. What ultimately limits
an architect’s ability to 
reduce clock period ?

A. Clock-to-Q, setup times.

Q. How can architects 
(not technologists) 
reduce clock period?
A. Shorten the machine’s 
critical path.

Rationale:   
We measure each instruction’s

execution time in “number of cycles”. 
By shortening the period for 

each cycle, we shorten execution time.
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   Completing the performance equation

Seconds
Program

 Instructions
Program

= Seconds
Cycle

We need all three 
terms, and only 
these terms, to 

compute CPU Time!

When is it OK to compare clock rates?

What factors make 
different programs 
have different CPIs? 

Instruction mix varies.

Cache behavior varies.

Branch prediction varies.

“CPI” -- The Average 
Number of Clock 

Cycles Per Instruction 
For the Program

 Instruction
Cycles
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Consider Lecture 10 single-cycle CPU ...

All instructions take 1 cycle to execute 
every time they run.

CPI of any program running on machine? 1.0

“average CPI for the program” is a 
more-useful concept for more 
complicated machines ...
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   Consider machine with a data cache ...

 Instructions
Program

= Seconds
Cycle

A program’s load 
instructions “stride” 

through every 
memory address.

The cache never “hits”, 
so every load goes to 

DRAM (100x slower than 
loads that go to cache). 

Thus, the average number of cycles for load 
instructions is higher for this program.

 Instruction
Cycles

Thus, the average number of cycles for all 
instructions is higher for this program.

Seconds
Program

Thus, program takes longer to run!
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   Final thoughts: Performance Equation

Seconds
Program

 Instructions
Program

= Seconds
Cycle Instruction

Cycles

Goal is to 
optimize 
execution 
time, not
individual
equation

terms.

The CPI of 
the 

program.
Reflects

the 
program’s 
instruction 

mix.

Machines
are

optimized
with 

respect to
program

workloads.

Clock
period.

Optimize
jointly
with

machine
CPI.
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Pipelining

13
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Clocking methodology ...

Processor uses 
synchronous logic
design (a “clock”).
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f T
1 MHz 1 μs

10 MHz 100 ns
100 MHz 10 ns

1 GHz 1 ns

All state elements act 
like positive edge-
triggered flip flops.

D Q

clk
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Memory and register file semantics ...

32
rd1

RegFile

32
rd2

WE32
wd

5
rs1

5
rs2

5
ws

Reads are combinational: 
Put a stable address on 
input, a short time later 
data appears on output. 

32
Dout

Data Memory

WE32
Din

32
Addr

Writes are clocked:  If WE 
is high, memory Addr 
(or register file ws) 
captures memory Din 
(or register file wd) on 
positive edge of clock.

Note: May not be best choice for project.
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Recall: A single-cycle processor

rd1

RegFile

rd2

WE
wd

rs1

rs2

ws

D

PC

Q

+

0x4

Dout

Data Memory

WE

Din

Addr

MemToReg

Addr Data

Instr

Mem
32A

L

U

32

32

op

Ext

Seconds
Program

 Instructions
Program

= Seconds
Cycle Instruction

Cycles

CPI == 1
This is good.

Slow.
This is bad.

Challenge: Speed up clock while keeping CPI == 1
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 A MIPS R-format CPU design

32
rd1

RegFile

32
rd2

WE32
wd

5
rs1

5
rs2

5
ws

32A
L
U

32

32

op

opcode rs rt rd functshamt

Decode fields to get : ADD $8 $9 $10  

Logic
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 How data flows after posedge

32
rd1

RegFile

32
rd2

WE32
wd

5
rs1

5
rs2

5
ws

32A
L
U

32

32

op

Logic

Addr Data

Instr
Mem

D

PC

Q+

0x4
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 Next posedge: Update state and repeat

32
rd1

RegFile

32
rd2

WE32
wd

5
rs1

5
rs2

5
ws

D

PC

Q

19



UC Regents Spr 2010 © UCBEECS 150 - L11:  Processor Pipelining

Observation: Logic idle most of cycle

rd1

RegFile

rd2

WE
wd

rs1

rs2

ws

D

PC

Q

+

0x4

Dout

Data Memory

WE

Din

Addr

MemToReg

Addr Data

Instr

Mem
32A

L

U

32

32

op

Ext

For most of cycle, ALU is either “waiting” for 
its inputs, or “holding” its output

Ideal: a CPU architecture where each part is always “working”.
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Inspiration: Automobile assembly line
Assembly line moves on a steady clock.  

Each station does the same task on each car.
Car 

body 
shell

Car 
chassis

Merge
station

Bolting
station

The 
clock

21
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Lessons from car assembly lines

Faster line movement yields more 
cars per hour off the line.

Faster line movement requires more 
stages, each doing simpler tasks.

To maximize efficiency, all stages 
should take same amount of time
(if not, workers in fast stages are idle)

“Filling”, “flushing”, and “stalling” 
assembly line are all bad news.
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Key analogy: The instruction is the car

D

PC

Q

+

0x4

Addr Data

Instr

Mem

IR IR IR

Instruction Fetch

IR

Pipeline Stage #1 Stage #2

Controls
hardware

in 
stage 2

Stage #3

Controls
hardware

in 
stage 3

Stage #4

Controls
hardware

in 
stage 4

Stage #5

Controls
hardware

in 
stage 5

“Data-stationary control”

23



UC Regents Spr 2010 © UCBEECS 150 - L11:  Processor Pipelining

Example: Decode & Register Fetch stage

D

PC

Q

+

0x4

Addr Data

Instr

Mem

IR

Instr Fetch

Pipeline Stage #1

rd1

RegFile

rd2

WE
wd

rs1

rs2

ws

Ext

IR

B

A

M

Stage #2

Decode & Reg Fetch

IR

Stage #3

ADD R4,R3,R2OR R7,R6,R5SUB R10,
    R9,R8

ADD R4,R3,R2
OR R7,R6,R5
SUB R10,R9,R8

A sample program

R’s chosen so that 
instructions are 

independent - like 
cars on the line.
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Decode & Reg Fetch

Performance Equation and Pipelining

rd1

RegFile

rd2

WE
wd

rs1

rs2

ws

D

PC

Q

+

0x4

Addr Data

Instr

Mem

Ext

IR IR IR

B

A

M

Instr Fetch Stage #3

Seconds
Program

 Instructions
Program= Seconds

Cycle Instruction
Cycles

To get shortest 
clock period, 

balance the work 
to do in each 

pipeline stage.

CPI == 1
Once pipe is fill,
one instruction
completes per 

cycle

Clock period is 
shorter

Less work to do 
in each cycle
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Hazards: An instruction is not a car ...

rd1

RegFile

rd2

WE
wd

rs1

rs2

ws

D

PC

Q

+

0x4

Addr Data

Instr

Mem

Ext

IR IR IR

B

A

M

Instr Fetch

Stage #1 Stage #2 Stage #3

Decode & Reg Fetch

ADD R4,R3,R2OR R5,R4,R2

An example of a 
“hazard” -- we must 

(1) detect and 
(2) resolve all hazards 

to make a CPU that 
matches ISA

R4 not written yet ...... wrong value of 
R4 fetched from 
RegFile, contract 
with programmer 
broken!  Oops! ADD R4,R3,R2

OR R5,R4,R2

New sample program

26



UC Regents Spr 2010 © UCBEECS 150 - L11:  Processor Pipelining

Decode & Reg Fetch

Performance Equation and Hazards

rd1

RegFile

rd2

WE
wd

rs1

rs2

ws

D

PC

Q

+

0x4

Addr Data

Instr

Mem

Ext

IR IR IR

B

A

M

Instr Fetch Stage #3

Seconds
Program

 Instructions
Program= Seconds

Cycle Instruction
Cycles

“Software slows 
the machine 

down”
Seymour Cray

Some ways to 
cope with hazards 

makes CPI > 1
“stalling pipeline”

Added logic to 
detect and resolve 
hazards increases 

clock period
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A (simplified) 5-stage pipelined CPU

rd1

RegFile

rd2

WE
wd

rs1

rs2

ws

D

PC

Q

+

0x4

Addr Data

Instr

Mem

Ext

IR IR

B

A

M

Instr Fetch

“IF” Stage “ID/RF” Stage

Decode & Reg Fetch

1 2

“EX” Stage
Execution

32A

L

U

32

32

op

IR

Y

M

3

IR

Dout

Data Memory

WE

Din

Addr

MemToReg

R

“MEM” Stage
Memory

WE, MemToReg

4
WB
5

Write
Back

Mux,Logic
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Sometimes, “contract” is a challenge

rd1

RegFile

rd2

WE
wd

rs1

rs2

ws

D

PC

Q

+

0x4

Addr Data

Instr

Mem

Ext

IR IR

B

A

M

Instr Fetch

“IF” Stage “ID/RF” Stage

Decode & Reg Fetch

1 2

“EX” Stage
Execution

32A

L

U

32

32

op

IR

Y

M

3

IR

Dout

Data Memory

WE

Din

Addr

MemToReg

R

“MEM” Stage
Memory

WE, MemToReg

4
WB
5

Write
Back

Mux,Logic

LW R4,0(R0)
OR R5,R4,R2

Sample Program
LW R4,
0(R0)

OR R5,R4,R2

... but we haven’t 
even started the 
load yet!

One approach: change 
the contract!
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MIPS LW contract: Delayed Loads

Instruction
Fetch

Instruction
Decode

Operand
Fetch

Execute

Result
Store

Next
Instruction

Fetch the load inst from memory 

“Retrieve” register value: $2 

Compute memory address: 32 + $2 

Load memory address contents into: $1  

Prepare to fetch instr that follows 
the LW in the program. Depending on 
load semantics, new $1 is visible to 
that instr, or not until the following 
instr (”delayed loads”).

Decode fields to get : LW $1, 32($2)  

opcode rs rt offset “I-Format”

30
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After we change the contract ...

rd1

RegFile

rd2

WE
wd

rs1

rs2

ws

D

PC

Q

+

0x4

Addr Data

Instr

Mem

Ext

IR IR

B

A

M

Instr Fetch

“IF” Stage “ID/RF” Stage

Decode & Reg Fetch

1 2

“EX” Stage
Execution

32A

L

U

32

32

op

IR

Y

M

3

IR

Dout

Data Memory

WE

Din

Addr

MemToReg

R

“MEM” Stage
Memory

WE, MemToReg

4
WB
5

Write
Back

Mux,Logic

LW R4,0(R0)
OR R5,R4,R2

Sample Program
LW R4,
0(R0)

OR R5,R4,R2

... “delayed load” 
contract does not 
guarantee new R4 
is seen.

Only partially solves 
problem ... soon, we 

finish the story.
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Visualizing Pipelines

32
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Pipeline Representation #1: Timeline

D

PC

Q

+

0x4

Addr Data

Instr

Mem

IR IR

IF (Fetch) ID (Decode) EX (ALU)

IR IR

MEM WB

ADD R4,R3,R2

OR  R7,R6,R5

SUB R1,R9,R8
XOR R3,R2,R1

AND R6,R5,R4
I1:
I2:
I3:
I4:
I5:

Sample Program

IF ID

IF

EX

ID

IF

MEM

EX

ID

IF

WB

MEM

EX

IF
ID

WB

MEM

ID
EX

IF

WB

EX
MEM

ID
MEM
WB

EX

I1:
I2:
I3:
I4:
I5:

t1 t2 t3 t4 t5 t6 t7 t8Time:
Inst

I6:

Good for visualizing pipeline fills.

Pipeline 
is “full”
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Pipeline 
is “full”

Good for visualizing pipeline stalls.

Representation #2: Resource Usage

D

PC

Q

+

0x4

Addr Data

Instr

Mem

IR IR IR IR

ADD R4,R3,R2

OR  R7,R6,R5

SUB R1,R9,R8
XOR R3,R2,R1

AND R6,R5,R4
I1:
I2:
I3:
I4:
I5:

Sample Program

I1 I2

I1

I3

I2

I1

I4

I3

I2

I1

I5

I4

I3

I1
I2

IF:
ID:
EX:
MEM:
WB:

t1 t2 t3 t4 t5 t6 t7 t8Time:
Stage

IF (Fetch) ID (Decode) EX (ALU) MEM WB

I5

I4

I2
I3

I6

I5

I3
I4

I6

I7

I4
I5

I6

I7

I8
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Hazard Taxonomy

35
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Structural Hazards

Several pipeline stages need to use the 
same hardware resource at the same time.

Solution #1: Add extra copies of
the resource (only works sometime).

Solution #2: Change resource so
that it can handle concurrent use.

Solution #3: Stages “take turns”
by stalling parts of the pipeline.
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rd1

RegFile

rd2

WE
wd

rs1

rs2

ws

Ext

IR IR

B

A

M

“IF” Stage “ID/RF” Stage “EX” Stage

32A

L

U

32

32

op

IR

Y

M

IR

R

“MEM” Stage

WE, MemToReg

WB

Mux,Logic

32
Dout

Data Memory

WE32

Din

Addr

MemToReg

PC

To branch 
logic

Structural Hazard Example: One Memory

Used by 
IF stage 

and 
MEM stage
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A solution: “Extra copies” of memory

rd1

RegFile

rd2

WE
wd

rs1

rs2

ws

D

PC

Q

+

0x4

Addr Data

Instr

Mem

Ext

IR IR

B

A

M

Instr Fetch

“IF” Stage “ID/RF” Stage

Decode & Reg Fetch

1 2

“EX” Stage
Execution

32A

L

U

32

32

op

IR

Y

M

3

IR

Dout

Data Memory

WE

Din

Addr

MemToReg

R

“MEM” Stage
Memory

WE, MemToReg

4
WB
5

Write
Back

Mux,Logic

I and D caches 
 are a

hybrid solution
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Alternatively: Concurrent use ...

rd1

RegFile

rd2

WE
wd

rs1

rs2

ws

D

PC

Q

+

0x4

Addr Data

Instr

Mem

Ext

IR IR

B

A

M

Instr Fetch

“IF” Stage “ID/RF” Stage

Decode & Reg Fetch

1 2

“EX” Stage
Execution

32A

L

U

32

32

op

IR

Y

M

3

IR

Dout

Data Memory

WE

Din

Addr

MemToReg

R

“MEM” Stage
Memory

WE, MemToReg

4
WB
5

Write
Back

Mux,Logic

ID and WB stages use 
register file in 

same clock cycle
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Data Hazards: 3 Types (RAW, WAR, WAW)

Several pipeline stages read or write the
same data location in an incompatible way.

Read After Write (RAW) hazards.
Instruction I2 expects to read a data
value written by an earlier instruction,
but I2 executes “too early” and reads
the wrong copy of the data.

Note “data value”, not “register”. Data hazards are 
possible for any architected state (such as main 
memory).  In practice, main memory hazard 
avoidance is the job of the memory system.
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Recall: RAW example

rd1

RegFile

rd2

WE
wd

rs1

rs2

ws

D

PC

Q

+

0x4

Addr Data

Instr

Mem

Ext

IR IR IR

B

A

M

Instr Fetch

Stage #1 Stage #2 Stage #3

Decode & Reg Fetch

ADD R4,R3,R2OR R5,R4,R2

R4 not written yet ...... wrong value of 
R4 fetched from 
RegFile, contract 
with programmer 
broken!  Oops!

ADD R4,R3,R2
OR R5,R4,R2

Sample program

This is what 
we mean 

when we say 
Read After 

Write (RAW) 
Hazard
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Data Hazards: 3 Types (RAW, WAR, WAW)

Write After Read (WAR) hazards. Instruction 
I2 expects to write over a data value after an 
earlier instruction I1 reads it.  But instead, I2 
writes too early, and I1 sees the new value.

Write After Write (WAW) hazards. Instruction 
I2 writes over data an earlier instruction I1 
also writes.  But instead, I1 writes after I2, 
and the final data value is incorrect.

WAR and WAW not possible in our 5-stage pipeline.  
But are possible in other pipeline designs.
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I1:
I2:
I3:
I4:
I5:

t1 t2 t3 t4 t5 t6 t7 t8Time:
Inst

I6:

Control Hazards: A taken branch/jump

D

PC

Q

+

0x4

Addr Data

Instr

Mem

IR IR

IF (Fetch) ID (Decode) EX (ALU)

IR IR

MEM WB

BEQ R4,R3,25

SUB R1,R9,R8
AND R6,R5,R4

I1:
I2:
I3:

Sample Program
(ISA w/o branch 
delay slot) IF ID

IF

EX

ID

IF

MEM WB
EX stage 
computes 
if branch 
is taken

Note: with branch delay slot, I2 MUST 
complete, I3 MUST NOT complete.

If branch is taken, 
these instructions 

MUST NOT complete!
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Hazards Recap

Structural Hazards

Data Hazards (RAW, WAR, WAW)

Control Hazards (taken branches 
and jumps)

On each clock cycle, we must detect the presence
of all of these hazards, and resolve them before 
they break the “contract with the programmer”.
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Hazard Resolution Tools
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The Hazard Resolution Toolkit

Stall earlier instructions in pipeline.

Kill earlier instructions in pipeline.

Forward results computed in later 
pipeline stages to earlier stages.
Add new hardware or rearrange 
hardware design to eliminate hazard. 

Make hardware handle concurrent 
requests to eliminate hazard.

Change ISA to eliminate hazard.
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Resolving a RAW hazard by stalling

rd1

RegFile

rd2

WE
wd

rs1

rs2

ws

D

PC

Q

+

0x4

Addr Data

Instr

Mem

Ext

IR IR IR

B

A

M

Instr Fetch

Stage #1 Stage #2 Stage #3

Decode & Reg Fetch

ADD R4,R3,R2OR R5,R4,R2

Let ADD proceed to 
WB stage, so that R4 
is written to regfile.

ADD R4,R3,R2
OR R5,R4,R2

Sample program
Keep executing
OR instruction
until R4 is ready.
Until then, send
NOPS to IR 2/3.

Freeze PC and IR 
until stall is over.

New datapath 
hardware

(1) Mux into IR 2/3
to feed in NOP.

(2) Write enable 
on PC and IR 1/2
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The Hazard Resolution Toolkit

Stall earlier instructions in pipeline.

Kill earlier instructions in pipeline.

Forward results computed in later 
pipeline stages to earlier stages.
Add new hardware or rearrange 
hardware design to eliminate hazard. 

Make hardware handle concurrent 
requests to eliminate hazard.

Change ISA to eliminate hazard.
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rd1

RegFile

rd2

WE
wd

rs1

rs2

ws

D

PC

Q

+

0x4

Addr Data

Instr

Mem

Ext

IR IR

B

A

M

Instr Fetch

“IF” Stage “ID/RF” Stage

Decode & Reg Fetch

1 2

“EX” Stage
Execution

32A

L

U

32

32

op

IR

Y

M

3

Resolving a RAW hazard by forwarding

ADD R4,R3,R2OR R5,R4,R2
ADD R4,R3,R2
OR R5,R4,R2

Sample program

ALU computes R4  in 
the EX stage, so ...Just forward it 

back!

Unlike stalling, does 
not change CPI. May 
hurt cycle time.
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The Hazard Resolution Toolkit

Stall earlier instructions in pipeline.

Kill earlier instructions in pipeline.

Forward results computed in later 
pipeline stages to earlier stages.
Add new hardware or rearrange 
hardware design to eliminate hazard. 

Make hardware handle concurrent 
requests to eliminate hazard.

Change ISA to eliminate hazard.
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I1:
I2:
I3:
I4:
I5:

t1 t2 t3 t4 t5 t6 t7 t8Time:
Inst

I6:

Control Hazards: Fix with more hardware

D

PC

Q

+

0x4

Addr Data

Instr

Mem

IR IR

IF (Fetch) ID (Decode) EX (ALU)

IR IR

MEM WB

BEQ R4,R3,25

SUB R1,R9,R8
AND R6,R5,R4

I1:
I2:
I3:

Sample Program
(ISA w/o branch 
delay slot) IF ID

IF

EX

ID

IF

MEM WB
EX stage 
computes 
if branch 
is taken

If branch is taken, 
these instructions 

MUST NOT complete!

If we add hardware, can we 
move it here?

51



UC Regents Spr 2010 © UCBEECS 150 - L11:  Processor Pipelining

Resolving control hazard with hardware

rd1

RegFile

rd2

WE
wd

rs1

rs2

ws

D

PC

Q

+

0x4

Addr Data

Instr

Mem

Ext

IR IR IR

B

A

M

Instr Fetch

Stage #1 Stage #2 Stage #3

Decode & Reg Fetch

==

To branch 
control logic
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I1:
I2:
I3:
I4:
I5:

t1 t2 t3 t4 t5 t6 t7 t8Time:
Inst

I6:

Control Hazards: After more hardware

D

PC

Q

+

0x4

Addr Data

Instr

Mem

IR IR

IF (Fetch) ID (Decode) EX (ALU)

IR IR

MEM WB

BEQ R4,R3,25

SUB R1,R9,R8
AND R6,R5,R4

I1:
I2:
I3:

Sample Program
(ISA w/o branch 
delay slot) IF ID

IF

EX MEM WB

If branch is taken, this 
instruction MUST NOT 

complete!

ID stage 
computes 
if branch 
is taken

If we change ISA, can we always let I2 
complete (”branch delay slot”) and 

eliminate the control hazard.
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MIPS Delayed Branch:  BEQ $1,$2,25

Instruction
Fetch

Instruction
Decode

Operand
Fetch

Execute

Result
Store

Next
Instruction

Fetch branch inst from memory 

“Retrieve” register values: $1, $2 

Compute if we take branch: $1 == $2 ? 

Decode fields to get: BEQ $1, $2, 25  

opcode rs rt offset “I-Format”

ALWAYS prepare to fetch instr that 
follows the BEQ in the program 
(”delayed branch”). IF we take branch, 
the instr we fetch AFTER that 
instruction is PC + 4 + 100.

PC == “Program Counter”
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The Hazard Resolution Toolkit

Stall earlier instructions in pipeline.

Kill earlier instructions in pipeline.

Forward results computed in later 
pipeline stages to earlier stages.
Add new hardware or rearrange 
hardware design to eliminate hazard. 

Make hardware handle concurrent 
requests to eliminate hazard.

Change ISA to eliminate hazard.
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Resolve control hazard by killing instr

rd1

RegFile

rd2

WE
wd

rs1

rs2

ws

D

PC

Q

+

0x4

Addr Data

Instr

Mem

Ext

IR IR IR

B

A

M

Instr Fetch

Stage #1 Stage #2 Stage #3

Decode & Reg Fetch

J 200

J 200
OR R5,R4,R2

Sample program
(no delay slot) Detect J 

instruction, mux
a NOP into IR 1/2

Compute new 
PC using hardware not shown ...

This hurts 
CPI.

Can we do 
better?
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The Hazard Resolution Toolkit

Stall earlier instructions in pipeline.

Kill earlier instructions in pipeline.

Forward results computed in later 
pipeline stages to earlier stages.
Add new hardware or rearrange 
hardware design to eliminate hazard. 

Make hardware handle concurrent 
requests to eliminate hazard.

Change ISA to eliminate hazard.
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Structural hazard solution: concurrent use

rd1

RegFile

rd2

WE
wd

rs1

rs2

ws

D

PC

Q

+

0x4

Addr Data

Instr

Mem

Ext

IR IR

B

A

M

Instr Fetch

“IF” Stage “ID/RF” Stage

Decode & Reg Fetch

1 2

“EX” Stage
Execution

32A

L

U

32

32

op

IR

Y

M

3

IR

Dout

Data Memory

WE

Din

Addr

MemToReg

R

“MEM” Stage
Memory

WE, MemToReg

4
WB
5

Write
Back

Mux,Logic

ID and WB stages use 
register file in 

same clock cycle

Does not 
come for 
free ...
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Hazard Diagnosis
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Data Hazards: Read After Write

Read After Write (RAW) hazards.
Instruction I2 expects to read a data
value written by an earlier instruction,
but I2 executes “too early” and reads
the wrong copy of the data.

Classic solution:  use forwarding heavily, 
fall back on stalling when forwarding won’t
work or slows down the critical path too much. 
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Mux,Logic

Full bypass network ...

rd1

RegFile

rd2

WE
wd

rs1

rs2

ws

Ext

IR IR

B

A

M

32A

L

U

32

32

op

IR

Y

M

IR

Dout

Data Memory

WE

Din

Addr

MemToReg

R

WE, MemToReg

ID (Decode) EX MEM WB

From 
WB
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Mux,Logic

Common bug: Multiple forwards ...

rd1

RegFile

rd2

WE
wd

rs1

rs2

ws

Ext

IR IR

B

A

M

32A

L

U

32

32

op

IR

Y

M

IR

Dout

Data Memory

WE

Din

Addr

MemToReg

R

WE, MemToReg

ID (Decode) EX MEM WB

From 
WB

ADD R4,R3,R2 OR R2,R3,R1 AND R2,R2,R1

Which do we forward from?
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Mux,Logic

Common bug: Multiple forwards II ...

rd1

RegFile

rd2

WE
wd

rs1

rs2

ws

Ext

IR IR

B

A

M

32A

L

U

32

32

op

IR

Y

M

IR

Dout

Data Memory

WE

Din

Addr

MemToReg

R

WE, MemToReg

ID (Decode) EX MEM WB

From 
WB

ADD R4,R0,R2 OR R0,R3,R1 AND R0,R2,R1

Which do we forward from?
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LW and Hazards

No load 
“delay slot”
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Mux,Logic

Questions about LW and forwarding

rd1

RegFile

rd2

WE
wd

rs1

rs2

ws

Ext

IR IR

B

A

M

32A

L

U

32

32

op

IR

Y

M

IR

Dout

Data Memory

WE

Din

Addr

MemToReg

R

WE, MemToReg

ID (Decode) EX MEM WB

From 
WB

ADDIU R1 R1 24 LW R1 128(R29)

Do we need to stall ?
OR R3,R3,R2
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Mux,Logic

rd1

RegFile

rd2

WE
wd

rs1

rs2

ws

Ext

IR IR

B

A

M

32A

L

U

32

32

op

IR

Y

M

IR

Dout

Data Memory

WE

Din

Addr

MemToReg

R

WE, MemToReg

ID (Decode) EX MEM WB

From 
WB

ADDIU R1 R1 24 LW R1 128(R29)

Do we need to stall ?
OR R1,R3,R1

Questions about LW and forwarding
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Resolving a RAW hazard by stalling

rd1

RegFile

rd2

WE
wd

rs1

rs2

ws

D

PC

Q

+

0x4

Addr Data

Instr

Mem

Ext

IR IR IR

B

A

M

Instr Fetch

Stage #1 Stage #2 Stage #3

Decode & Reg Fetch

ADD R4,R3,R2OR R5,R4,R2

Let ADD proceed to 
WB stage, so that R4 
is written to regfile.

ADD R4,R3,R2
OR R5,R4,R2

Sample program
Keep executing
OR instruction
until R4 is ready.
Until then, send
NOPS to IR 2/3.

Freeze PC and IR 
until stall is over.

New datapath 
hardware

(1) Mux into IR 2/3
to feed in NOP.

(2) Write enable 
on PC and IR 1/2
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Branches and Hazards

Single 
“delay slot”
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Recall: Control hazard and hardware

rd1

RegFile

rd2

WE
wd

rs1

rs2

ws

D

PC

Q

+

0x4

Addr Data

Instr

Mem

Ext

IR IR IR

B

A

M

Instr Fetch

Stage #1 Stage #2 Stage #3

Decode & Reg Fetch

==

To branch 
control logic
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I1:
I2:
I3:
I4:
I5:

t1 t2 t3 t4 t5 t6 t7 t8Time:
Inst

I6:

Recall: After more hardware, change ISA

D

PC

Q

+

0x4

Addr Data

Instr

Mem

IR IR

IF (Fetch) ID (Decode) EX (ALU)

IR IR

MEM WB

BEQ R4,R3,25

SUB R1,R9,R8
AND R6,R5,R4

I1:
I2:
I3:

Sample Program
(ISA w/o branch 
delay slot) IF ID

IF

EX MEM WB

If branch is taken, this 
instruction MUST NOT 

complete!

ID stage 
computes 
if branch 
is taken

If we change ISA, can we always let I2 
complete (”branch delay slot”) and 

eliminate the control hazard.
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Mux,Logic

Question about branch and forwards:

rd1

RegFile

rd2

WE
wd

rs1

rs2

ws

Ext

IR IR

B

A

M

32A

L

U

32

32

op

IR

Y

M

IR

Dout

Data Memory

WE

Din

Addr

MemToReg

R

WE, MemToReg

ID (Decode) EX MEM WB

BEQ R1 R3 label

Will this work as shown?
OR R3,R3,R1

==

To branch 
control logic
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Lessons learned

Pipelining is hard

Write test code in advance

Study every instruction

Think about interactions ... 
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Lessons learned

Pipelining is hard

Write test code in advance

Study every instruction

Think about interactions ... 
between forwarding, branch and 
jump delay slots, R0 issues 
LW issues ... a long list!
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Control Implementation
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Recall: What is single cycle control?

32
rd1

RegFile

32
rd2

WE32
wd

5
rs1

5
rs2

5
ws

ExtRegDest

ALUsrcExtOp

ALUctr

32A

L

U

32

32

op

MemToReg

32
Dout

Data Memory

WE32

Din

Addr

MemWr

Equal

RegWr

32
Addr Data

Instr
Mem

Equal

RegDest
RegWr

ExtOp
ALUsrc MemWr

MemToReg

PCSrc

Combinational Logic
(Only Gates, No Flip Flops)
Just specify logic functions!
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In pipelines, all IR registers are used

IR IR IR IR

ID (Decode) EX MEM WB

Equal

RegDest
RegWr

ExtOp MemToReg

PCSrc

Combinational Logic
(Only Gates, No Flip Flops)

(add extra state outside!)

A “conceptual” design -- for shortest critical 
path, IR registers may hold decoded info,

not the complete 32-bit instruction
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Exceptions and Interrupts
Exception:  An unusual event happens to an 
instruction during its execution.  Examples: divide 
by zero, undefined opcode.

Interrupt:  Hardware signal to switch the processor to 
a new instruction stream.  Example: a sound card 
interrupts when it needs more audio output samples 
(an audio “click” happens if it is left waiting).
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Challenge: Precise Interrupt / Exception

!"#$%&

!"#$%

&'"()*+,-*.//0

123.4-*5+.66+,
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=%;'>9;?*';@*AB$6C86C"@%"*%D%(B$9C;*E'#*89"#$

9>FG%>%;$%@*9;*+H1H*9;*IJ&*41/KH+*LB$*@9@*;C$*#)CE*

BF*9;*$)%*#BL#%MB%;$*>C@%G#*B;$9G*>9@6N9;%$9%#2

!"#$%

&'()*+)

+2*7D(%F$9C;#*;C$*F"%(9#%O

.2*788%($9:%*C;*'*:%"P*#>'GG*(G'##*C8*F"C?"'>#

A;%*>C"%*F"CLG%>*;%%@%@*$C*L%*#CG:%@

!"#$%"&'$%(#)*+%)

!"#$%

&'"()*+,-*.//0

123.4-*5+.66+1

Q"%(9#%*I;$%""BF$#

,$'-.)$'(//+(%'()'0*'(#'0#$+%%./$'0)'$(1+#'2+$3++#'
$3"'0#)$%.4$0"#) !"#$%&' #()%&'*+,

- ./0%01102.%31%#44%'(".562.'3("%67%.3%#()%'(246)'(8%&' '"
.3.#44$%239740.0

- (3%01102.%31%#($%'(".562.'3(%#1.05%&' /#"%.#:0(%74#20

;/0%'(.05567.%/#()405%0'./05%#<35."%./0%75385#9%35%
50".#5."%'.%#.%&'*+%=

Definition:

Follows from the “contract” between 
the architect and the programmer ...

(or exception)
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Precise Exceptions in Static Pipelines
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Key observation: architected state only 
change in memory and register write stages.
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Thursday:
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