EECS 150 -- Digital Design

Lecture 11-- Processor Pipelining

2010-2-23
John Wawrzynek

Today’s lecture by John Lazzaro

www-inst.eecs.berkeley.edu/~cs150

Q EECS 150 - L11: Processor Pipelining UC Regents Spr 2010 © UCB

1

Today: Pipelining

How to apply the performance
equation to our single-cycle CPU.

Pipelining: an idea from assembly
line production applied to CPU design

Why pipelining Is hard: data hazards,
control hazards, structural hazards.

Visualizing pipelines to evaluate
hazard detection and resolution.

A tool kit for hazard resolution.

EECS 150 - L11: Processor Pipelining UC Regents Spr 2010 © UCB

X K K XK

New successful instruction sets are rare

4(@

<Q/
software]L\/

/1

instruction set

hardware

\
I"\
16
N

Implementors suffer with original sins of 1SAs,
to support the installed base of software.

Q EECS 150 - L11: Processor Pipelining UC Regents Spr 2010 © UCB

3

define: The Architect’s Contract

To the program, It appears that
9'6 instructions execute in the correct
order defined by the ISA.

As each instruction completes, the
machine state (regs, mem) appears to
the program to obey the ISA.

What the machine actually does is
9'6 up to the hardware designers, as

long as the contract is kept.
Goal Keep contract and run programs faster.

EECS 150 - UC Regents Spr 2010 © UCB

4

Performance Measurement
(as seen by a CPU designer)

Q. Why do we care about a program’s performance?
A. We want the CPU we are designing to run it well !

Q EECS 150 - L11: Processor Pipelinin

Step 1: Analyze the right measurement!

Guides CPU Time:

CPU . :
design Time the CPU spends running
program under measurement.
Measuring CPU time (Unix):
% time <program name>
@5.77u 090.8%
Response Time:/
Guides P

SYS}‘GWI\ Total time: CPU Time + time
design spent waiting (for disk, 1/0O, ...).

Q EECS 150 - L11: Processor Pipelining UC Regents Spr 2010 © UCB

6

CPU time: Proportional to Instruction Count

Q. Once ISA is set, who Q. Static count?

can influence instruction (lines of program printouf)
count? Or dynamic count?

A. Compiler writer, (trace of execution)
application developer. A. Dynamic.

CPU time o Machine Instructions

Program Program ~
/ Q. How does an architect
Rationale: Every influence the number of
additional machine instructions
instruction you needed to run an algorithm?
execute takes time. A. Create new instructions:

(d instruction set architect.

7

CPU time: Proportional to Clock Period

Q. How can arc_hitects Q. What ultimately limits
(not technologists) an architect’s ability to
reduce clock period? reduce clock period ?
A. Shorten the machine’s A. Clock-t0-Q, setup times
eritical path. ' ’ '
Time o Time
Program ~ One Clock Period
Rationale:

We measure each instruction’s
execution time in “number of cycles”.
By shortening the period for
(d each cycle, we shorten execution time.

EECS 150 - L11: Processor Pipelining UC Regents Spr 2010 © UCB

8

Completing the performance equation

What factors make j Cache behavior varies.
ditferent programs Instruction wmix varies.

have different CPls? \
Branch prediction varies.

Seconds _ Instructions Cycles Seconds

ProgramT Program Instruction Cycle

T~

We need all three “CPI” -- The Average
terms, and only Number of Clock
these terms, to Cycles Per Instruction

compute CPU Time! For the Program

When is it OK fo compare clock rates?

EECS 150 - L11: Processor Pipelining UC Regents Spr 2010 © UCB

9

Consider Lecture 10 single-cycle CPU ...

Lec #10: Project Introduction: Serial 'O MIPS Microarchitecture:
Thr 2/18 |[[PDF]

All instructions take 1 cycle to execute
every time they run.

9'6 CPI of any program running on machine? 1.0

“average CPI for the program”is a
movre-useful concept for more
complicated machines ...

Q EECS 150 - L11: Processor Pipelining UC Regents Spr 2010 © UCB

10

Consider machine with a data cache ...

A program’s load The cache never “hits’,
instructions “siride” so every load goes to
through every DRAM (1 00x slower than
memory address. loads that go to cache).

Thus, the average number of cycles for load
instructions is higher for this program.

Thus, the average number of cycles for all
instructions is higher for this program.

Seconds _ Instructions Cycles Seconds

Program Program Instruction Cycle

Cﬂf Thus, program takes longer to run!

EECS 150 - L11: Processor Pipelining UC Regents Spr 2010 © UCB

11

Final thoughts: Performance Equation

Seconds

Program

|

Goalisto
optimize
execution
time, not
individual
equation
terms.

Q EECS 150 - L11: Processor

__ Instructions
Program

|

Machines
are
optimized
with
respect to
program

workloads.

Pipelining

Cycles

Instruction

T

The CPI of
the
program.
Reflects
the
program’s

instruction

mix.

Seconds

Cycle

T

Clock
period.
Optimize
jointly
with
machine
Cchl.

UC Regents Spr 2010 © UCB

12

EECS 150 - L11: Processor Pipelining

UC Regents Spr 2010 © UCB

13

Clocking methodology ...

o T o
Processor uses clk __|
synchronous logic f -
design (a “clock”). T He s
10 MHz 100 ns
100 MHz 10 ns
1 GHz 1ns
—1D Q—>
All state elements act
like positive edge- S
triggered flip flops. r

Q EECS 150 - L11: Processor Pipelining UC Regents Spr 2010 © UCB

14

Memory and register file semantics ...

I R Reads are combinational:
SCANMN rdl—— Put a stable address on
oles |32 input, a short time later
fzv* N data appears on output.

|1

Data Memory Writes are clocked: If wE
N is high, memory addr
;T) Addr
> (or register file ws)

Dout [——> .
NN captures memory Din
32 /\ WE (or register file wd) on
T T positive edge of clock.

(d ProceNOfe: May not be best choice for project.

ssor Pipelining UC Regents Spr 2010 © UCB
15

Recall: A single-cycle processor

Challenge: Speed up clock while keeping CPl ==

Seconds __ Instructions Cycles Seconds
Program Program Instruction Cycle

T T

CPl == Slow.
4 0xs Thisisgood. This is bad.

< A .
RegFile op
. > rsl 32 \i\
Data Memory
PC Instr > > rs2 rdl A 32
Mem L Addr
> we rd2 32 u Dout
>»| D > > wd
0 Addr Data > > WE Din T
T WE
MemToReg
—p Ext

l¢ ¥
EECS 150 - L11: Processor Pipelining UC Regents Spr 2010 © UCB

16

A MIPS R-format CPU design

Decode fields to get : ADD $8 $9 S10

rs rt rd |shamt| funct
/) 7
Logic

op,/

opcode

RegFile 32
;%»rsl 32
5
ELINEEN oy rdl \\A 32
5;T>ws 32 L S
;r)wd rdZNi} i
32 /\ WE

Q EECS 150 - L11: Processor Pipelining UC Regents Spr 2010 © UCB

17

How data flows after posedge

[-
+ ——|D Q
0x4 —> A\

A

Instr
Mem

Addr Data|

5
5

|1

. RegFile
rsl 32
rs?2 rdl|
WS 32
P
w
35 /\ WE

Logic

on,/

32&

\

32

A
L | ;ﬁ
U

Y

Q EECS 150 - L11: Processor Pipelining

UC Regents Spr 2010 © UCB

18

Next posedge: Update state and repeat

PC

RegFile
rsl 32
rdl|

f

rs2

2
WS rd2| 3

Wd/ﬁ\ E

|1

f

L

Q EECS 150 - L11: Processor Pipelining UC Regents Spr 2010 © UCB

19

Observation: Logic idle most of cycle

For most of cycle, ALU is either “waiting” for
its inputs, or “holding” its output

Ideal: a CPU architecture where each part is always “working’.

< 0x4
< A .
RegFile op
> »rsi1 32 \i\
PC | | | 1Instr > > rs2 rdl N 32 Data Memory
Mem L Addr
i we rd2 32 u Dout
>D Q »Addr Data > > Hr) wd .

WE Din T
WE
MemToReg

—p Ext

l¢ ¥
EECS 150 - L11: Processor Pipelining UC Regents Spr 2010 © UCB

20

Inspiration: Automobile assembly line

Assembly line moves on a steady clock.

Each station does the same task on each car.

clock

Merge
station

Bolting
station @&

Car
body
shell

| Car
e chassis

UC Regents Spr 2010 © UCB

21

Lessons from car assembly lines

X

X
X
X

Faster line movement yields more
cars per hour off the line.

Faster line movement requires more
stages, each doing simpler tasks.

To maximize efficiency, all stages
should take same amount of time
(if not, workers in fast stages are idle)

“Filling”, “flushing”, and “stalling”
assembly line are all bad news.

Q EECS 150 - L11: Processor Pipelining UC Regents Spr 2010 © UCB

22

Key analogy: The instruction is the car

Pipeline Stage #1 Stage #2 Stage #3§Stage #42 Stage #5

IR

IR

Instruction Fetch
—
=

Q EECS 150 - L11: Processor Pipelining

-

Controls
hardware
in
stage 2

“Data-stationary control”

T

Controls

hardware

in
stage 3

):(..............)(..............)(

............. >

IR

T

Controls

hardware

in
stage 4

B

Controls
hardware
in
stage 5

UC Regents Spr 2010 © UCB

23

Example: Decode & Register Fetch stage
Plpelme Stage # 1

Stage #2 Stage #3
.........................) 2 CLILTTTTTT TP PP PTTT P PP PP PPPPTPTTTY y
Instr Fetich : Decode & Reg Fetch
SUB R10, OR R7,R6,R5 ADD R4,R3,R2
R9,R8 [T} > IR ’|IR
e~ oxe A sample program
< A ADD R4,R3,R2
e | e OR R7,R6,R5
- >y SUB R10,R9,RS8
) Aﬁwd WErd2 M ;
10 O e meep R’s chosen so that
instructions are
= B independent - like

(d = cars on the line.
EECS 150 - L11: Processor Pipelining

UC Regents Spr 2010 © UCB
24

Performance Equation and Pipelining

Seconds __ Instructions Seconds
Program Program Cycle
(........................ PP TTTTTTY Crrrr O (R PR »
. Instr Fetch Decode & Reg Fefch Stage #3
—IR / »IR > IR
CPl ==1 /
Once pipe is fill, Clock period is
one instruction
s shorter
— completes per a Less work to do
) (f{f'e in each cycle
\ —>———>{rs1
e —_ e To get shortest
AN I B — M clock period,

Q EECS 150 - L11: Processor Pipelining

» Ext

balance the work
to do in each
pipeline stage.

UC Regents Spr 2010 © UCB

25

Hazards: An instruction is not a car ...

: Stage #1 Stage #2 Stage #3 *
. Instr Feteh Decode % Reg Fetch
.| OR R5/ R4)R2 ADD (R4) R3, R2
B — > IR »IR
... wrong value of 7
R4 fetched from R4 not written yet .»
Regktile, contract N |
{** with programmer €W sample program
- broken! Oops! 42| ADD R4,R3,R2
o / OR R5,R4,R2
—>———>|rsl
- R An example of a
. I M| “hazard” -- we must
(1) detect and
(2) resolve all hazards
Jwp B 10 make a CPU that
(d r matches ISA

26

Performance Equation and Hazards

Seconds __ Instructions Seconds
Program Program Cycle
(........................ S R AP O (AR SRR >
. Instr Fetch Decode & Reg Fefch Stage #3
- IR] »IR >IR
Some ways‘to /
cope with hazards Added |OgiC to
e _makes CPI>1 detect and resolve
stalling pipeline A hazards increases
) (— clock period
\ —)Jﬁrsl 0
& e N y “Software slows
b o aadr patap RN the machine
down”
2) Jp Seymour Cray
» Ext J
EECS 150 - L11: Processor Pipelining T UC Regents Spr 2010 © UCB

27

A (simplified) 5-stage pipelined CPU

1
"IF” Stage “ID/RF” Stage “EX” stage “MEM” Stage WB

lnstr Fetch Decode % Reg Fetch : Execunon Memory Prite
Back
—|IR >»IR > IR v >IIR
WE, MemToReg
— 2
0x4 Mux,Logic A) j il 14 \ =
RegFile Adar]‘ R P
‘7L » rsl w in o T
=1 P [t L
0 Addr A< WErdZ M > M
B
» Ext

Q EECS 150 - L11: Processor Pipelinirllg

—>

UC Regents Spr 2010 © U!B

28

Sometimes, “contract” is a challenge

1
e TA08 .. f'.!?(.@!?.’f.ﬁ.‘.?ﬂf.... EX Sfaae “MEM” Stage | WB
. Instr Fetch Decode & Reg Fetch : Exeeunon Memory EWrite
OR RS5 (R4) ‘RZ LW R4, =
Sample Program _|;r JrlLO(RO) |- - >1R
LW R4, 0 (RO) ... but we haven’t WE, MemToReg
even started the
OR R5,R4,R2 load yet!
— | | i
g RegFile A]‘ R
e ([N B 7 f’ el
PC Mem Y >l ws
g rd2 M —> | M

Q Addr Dataly] Hﬁ wd WE —
B One approach: change
1 the contract!

Q T .
EECS 150 - L11: Processor Pipelinirlng UC Regents Spr 2010 © U!B

29

P

Instruction
Fetch

MIPS LW contract: Delayed Loads

Fetch the load inst from memory

V |chcode rs rt

offset

“I-Format”

Instruction
Decode

P
Operand

P

]
Result

Store

Next
Instruction

Decode fields to get :

Execute Compute memory address:

LW $1, 32(S$2)

Y7 [[°
Fetch Retrieve” register value: §$2

32 + $2

Load _mzaiory address contents—into: Sl

P " Prepare to fetch instr that follows
the LW in the program. Depending on
E— load semantics, new $1 is visible to
that instr, or not until the followi:ug

Q instr (”"delayed loads”).
EECS 150 - L11: Processor Pipelining

UC Regents Spr 2010 © UCB

30

After we change the contract ...

1
...f'.!f.’.’.?!?.@.‘?.... oo f‘.!?(.@!?.’f.ﬁ!ﬁ.!!f.... EX” Stage! “MEM.’.’.?I?QP W?.
. Instr Fetch Decode % Reg Fetch : Execunon Memory Egriie
OR RS‘RZ LW R4,
Sample Program _|;g J1r O (RO) 1R . o ir
LW R4,0(RO) Gelayed load” WE, MemToReg 1
OR R5,R 4 RO com‘ract does not
P guarantee new R4

IS Seen. ﬁ/’ .
0x4 Mux,Logic A X bata Hemory

AE_‘ RegFile \ hadr]‘ R >

I8 I N

— Ibr;s:lr ¥ o . y g
Q Addr Dataly| HT) wd WEr \:) »
Only partially solves
o B problem ... soon, we
(d T finish the story.
EECS 150 - L11: Processor Pipelinirlng UC Regents Spr 2010 © U!B

31

Visualizing Pipelines

Q EECS 150 - L11: Processor Pipelining

UC Regents Spr 2010 © UCB

32

Pipeline Representation #1: Timeline

.. s CLLLLLLLIIIII I,)()
IF (Fetch) ID (Decode) EX (ALUY T MEN T T W
oxa —|IR > IR > IR IR
1=
: e Good for visualizing pipeline fills.

Sample Program Time: t1 t2 t3 t4 t5 t6 t7

Il: ADD R4,R3,R2
I2: AND R6,R5,R4
I3: SUB R1,R9,RS8
I4: XOR R3,R2,R1
I5: OR R7,R6,R5

Q EECS 150 - L11: Processor Pipelining

Inst
Il:
I2:
I3:
I4:
I5:

I6:

IF ID EX MEM
IF ID EX
IF ID
IF

Pipeline _—
is “full” X

t8

Representation #2: Resource Usage

.........................).();(SEELTERERERTIELECECRELY = CETTPTS =
IF (Fetch) ID (Decode) : EX (ALU))‘ MEM wB
oxa —|IR > IR > IR IR
1=
: e Good for visualizing pipeline stalls.

Stage
Il: ADD R4,R3,R2
IF: Il I2 I3 I4 I5 16 17 I8
I2: AND R6,R5,R4
ID: Il I2 I3 I4 I5 16 17
I3: SUB R1,R9,RS8
I4: XOR R3,R2,Rl EX: Il I2 I3 I4 I5 16
I5: OR R7,R6,R5 ng Il I2 I3 I4 I5
: N I1 I2 I3 1I4
(d Pipeline —
[P ¢ ”
EECS 150 - L11: Processor Pipelining ls (fu" UC Regents Spr 2010 © UCB

34

Hazard Taxonomy

Q EECS 150 - L11: Processor Pipelining

UC Regents Spr 2010 © UCB

35

Structural Hazards

Several pipeline stages need to use the
same hardware resource at the same time.

Solution #1: Add extra copies of
the resource (only works sometime).

Solution #2: Change resource so
that it can handle concurrent use.

Solution #3: Stages “take turns”
by stalling parts of the pipeline.

ssor Pipelining UC Regents Spr 2010 © UCB

36

Structural Hazard Example: One Memory
T Stage | “IO/RF”Stage “EX"Stage"MEMStage WE

B R PirrrrrrnnnnnnrnnrnnnnnnnsnnnsnnnnnnsPiqenrrnnrnnnnnnnrrnaPpironrrrrrnrssnnnnnnrrePiqannnns
Usedby 1r >{IR >IR 7 > IR
13 stage WE, MemToReg

and
MEM stage Mux,Logic !
32 \
« lpc A J ol y |——>
: —> R P
RegFile To branch
> rsl logi
» rs2 rdl e)
emor: Y - /
; 7|17e rd2 M —>| M
Dou Ve WE _7 T
MemToReg
B
» Ext
|
k v
v
>
<
€ EECS T50-LTT. Processor PIpaTmng Y UC Regents Spr 2010 © UCB

37

A solution: “Extra copies” of memory

1
e ST20E ... “I/RE" Stage X Stage “.'Y!EM.’.’.?I?QP WB
. Instr Fetch " Decode & Reg Fetch : " Execution Memory ;jri;e
—(IR IR > IR ¥ > IR
WE, MemToReg 1
Mux, Logic|¢ }

> rs2

A

wd

0x4
RegFile
< > rsl
rdl
Str

rd2

op
32
32 Y
32 Data Memory
Addr R P
Dout

N\

Din
/‘ s |
MemToReg
—> M

WE

» Ext

/

land D caches
are a
hybrid solution

Q EECS 150 - L11: Processor Pipelinirllg

UC Regents Spr 2010 © U!B

38

Alternatively: Concurrent use ...

2
“I0/RF” Stage \:“EX” Siage “MEM” Stage WB

A\ Decode & Reg Fetch éExecunon Memory !
\ /

—{IR > IR >9/ v IR
\ / WE, MemToReg

1
“IF” Stage

lnstr Fetch

\‘ aaaaaaaaaa
Addr R P
Dout

| g A B
- en ;SQ SR M Y T
i e \
ID and WB stages use
e B register file in
(d 1 same clock cycle
EECS 150 - L11: Processor Pipelinirllgj UC Regents Spr 2010 © U!B

39

Data Hazards: 3 Types (RAW, WAR, WAW)

Several pipeline stages read or write the
same data location in an incompatible way.

Read After Write (RAW) hazards.
Instruction 12 expects to read a data
value written by an earlier instruction,
but 12 executes “too early” and reads
the wrong copy of the data.

Note “data value’ not “register’. Data hazards are

possible for any architected state (such as main

memory). In practice, main memory hazard
Q! avondance ls the job of the memory system.

EECS 150 - UC Regents Spr 2010 © UCB

40

Recall: RAW example

: Stage #1 Stage #2 Stage #3 *
. Instr Fetch > Decode & Reg Fetch |
Sample program OR R5{R4)R2 ADD(R4)R3,R2
ADD R4,R3,R2 [|. wr/on; value of |2 opr T
OR R5,R4,R2 R4 fetched from R4 not written yet .»
Regkile, contract
7 0t with programmer .
E broken! Oops! A2 "xs ::l Wahnaf
S RegFile e me
1| = S e when we say
- IR M Read After
D Q > addr Datal> WE WY"’e (RAW)
Hazard
> B

» Ext)
Q EECS 150 - L11: Processor Pipelining UC Regents Spr 2010 © UCB

41

Data Hazards: 3 Types (RAW, WAR, WAW)

Write After Read (WAR) hazards. Instruction
12 expects to write over a data value after an
earlier instruction I1 reads it. But instead, 12
writes too early, and |1 sees the new value.

Write After Write (WAW) hazards. Instruction
12 writes over data an earlier instruction I1
also writes. But instead, |1 writes after 12,
and the final data value is incorrect.

WAR and WAW not possible in our 9-stage pipeline.
Q! But are possible in other pipeline designs.

EECS 150 - L11: Processor Pipelining UC Regents Spr 2010 © UCB

42

Control Hazards: A taken branch/jump

4(. | |: . (Fetch) .).4 |D (Decode));(EX (ALU) .)4 |V|E |V| NWB >
o —|IR >»TIR >»TR > IR
1=
= e Note; with branch delay slot, 12 MUST
N A complete, I3 MUST NOT complete.

Sample Program Time: t1 t2 t3 t4 t5 t6 t7 t8

(ISA w/o branch Inst — — kX stage
delay slot) Il: IF ID @ MEM WB computes

Il: BEQ R4,R3,25 @ e Ib if branch

I2: AND R6,R5,R4 - ¥ is taken
I3: SUB R1,R9,RS8 : If branch is taken,
I5: these instructions

QI I6: MUST NOT complete!

EECS 150 - L11: Processor Pipelining UC Regents Spr 2010 © UCB

43

Hazards Recap

9'6 Structural Hazards

X Data Hazards (RAW, WAR, WAW)

% Control Hazards (taken branches
and jumps)

On each clock cycle, we must detect the presence

of all of these hazards, and resolve them before
they break the “contract with the programmer’.

Q EECS 150 - L11: Processor Pipelining UC Regents Spr 2010 © UCB

44

Hazard Resolution Tools

45

The Hazard Resolution Toolkit

pipeline stages to earlier stages
Add new hardware or rearrange

Change ISA to eliminate hazard.

requests to eliminate hazard.

Ry %k % % ¥

ECS 150 - L11: Processor Pipelining

Stall earlier instructions in pipeline.
Forward results computed in later

hardware design to eliminate hazard.

Kill earlier instructions in pipeline.
Make hardware handle concurrent

UC Regents Spr 2010 © UCB

46

Resolving a RAW hazard by stalling

STage #1 Stage #2 Stage #3 *
lnstr Feteh | Decode & Reg Fetch |
Sample program IR% OR R5(R4)R2 | | ADD(R4)R3,R2
(\/ IR IR
ADD R4 ’ R3 / R2) Keep execun"g LQT/AVDD Proceed 1» |
OR R5,R4,R2 [“| OR instruction WB stage, so that R4
[| untilR4is ready. is written to regfile
4 oxe Until then, send '
[] < A New datapath
e hardware

PC

IIIII

» Addr Data

ws

wd

rd2|

WE

NOPS toIR 2/3." 4
rsll!egFile
_)Ar, rs2 rdl]
—<
—

— |

Ext

Freeze PC and IR

EECS 150 - L11: Processor Pipelining

Gf

until stall is over.

Y

(1) Mux into IR

2/3

to feed in NOP.

(2) Write enable
on PC and IR 1/2

UC Regents Spr 2010 © UCB

47

The Hazard Resolution Toolkit

pipeline stages to earlier stages
Add new hardware or rearrange

Change ISA to eliminate hazard.

requests to eliminate hazard.

Rx %k ¥

ECS 150 - L11: Processor Pipelining

Stall earlier instructions in pipeline.
Forward results computed in later

hardware design to eliminate hazard.

Kill earlier instructions in pipeline.
Make hardware handle concurrent

UC Regents Spr 2010 © UCB

48

Resolving a RAW hazard by forwarding

P ieivion A
. Instr Fetch

Sample program

ADD R4,R3,R2
OR R5,R4,R2

4@:

IR

OR R5,R4,R2

ADD (R4)R3,R2
—_— >

IR—— >

Q EECS 150 - L11: Processor Pipelining

> IR /
_ ALU computes R4 in
Just forward it the EX stage, $0...
back! ﬂ[
\ﬂi‘A ‘jﬁ 2 > ¥
rslllegF:l. e 7
_)Ar) rs2 rdl L
> :’; rd2 —>| M > M
/ Unlike stalling, does
B
> Ext

not change CPI. May

hurt cycle time.

UC Regents Spr 2010 © UCB

49

The Hazard Resolution Toolkit

pipeline stages to earlier stages
Add new hardware or rearrange

Change ISA to eliminate hazard.

requests to eliminate hazard.

R xxJ ¥ %

ECS 150 - L11: Processor Pipelining

Stall earlier instructions in pipeline.
Forward results computed in later

hardware design to eliminate hazard.

Kill earlier instructions in pipeline.
Make hardware handle concurrent

UC Regents Spr 2010 © UCB

50

Control Hazards: Fix with more hardware

A N T <o T — i
oxa —|IR > IR »IR > IR
1=
- mses If we add hardware, can we
NI - move it here?

Sample Program Time: t1 \t2 t3 t4 t5 t6 t7 t8
(ISA w/o branch Inst — kX stage

delay slot) Il IF ‘ @ MEM WB computes
Il: BEQ R4,R3,25 I.f branch

: T is taken
I2: AND R6,R5,R4
I3: SUB R1,R9,R8 I4°\h‘ branch is taken,

these instructions

ﬂ EECS 150 - L11: Processor Pipelining . MUST NOT complsc‘:l. Ree:ents Spr 2010 © UCB

51

Resolving control hazard with hardware

: Stage #1 Stage #2 Stage #3 *
. Instr Fetch " “Decode & Reg Fetch |
To branch IR IR
control logic ~—|
{«% 0x4

Q EECS 150 - L11: Processor Pipelining UC Regents Spr 2010 © UCB

52

Control Hazards: After more hardware

.........................)c();(CECRREREEIEEELICLIELEY = CETERPr =
IF (Fetch) ID (Decode) i EX (ALU) > MEM WB
4@4%4 —|IR > IR > IR IR
I8 If we change ISA, can we always let 12
z complete ("branch delay slot”) and
ol —fhcr paca eliminate the control hazard.

Sample Program Timg: t1 t2 t3 t4 t5 t6 t7 t8

(ISA w/o branch Ins - 1D stage
delay slot) Il; IF EX MEM WB computes

I1: BEQ R4,R3,25 @ ¥ if branch
D nems, I3: is taken
I2: AND R6,R5,R4 I4:

I3: SUB R1,R9,R8 : If branch is taken, this

I5: instruction MUST NOT
(d I16: complete!

EECS 150 - L11: Processor Pipelining UC Regents Spr 2010 © UCB

53

MIPS Delayed Branch: BEQ $1,$2,25

P

Instruction
Fetch

Fetch branch inst from memory

P

opcode | rs rt offset “I“Forma'l'”

Instruction
Decode

P

Decode fields to get: BEQ $1, S$S2, 25

Operand
Fetch

“Retrieve” register values: S$1, $2

P

Execute

Compute if we take branch: $1 == $2 ?

V

Result
Store

LWAYS prepare to fetch instr tha

/

follows the BEQ in the program

Next
Instruxtion

("delayed branch”). IF we take branch,

the instr we fetch AFTER that

I

Q EECS 150 - L11: Processor Pipelining

instruction is PC + 4 + 100.

UC Regents Spr 2010 © UCB

54

The Hazard Resolution Toolkit

pipeline stages to earlier stages

Add new hardware or rearrange

Change ISA to eliminate hazard.

requests to eliminate hazard.

Rk gk ¥ ¥ %

ECS 150 - L11: Processor Pipelining

Stall earlier instructions in pipeline.
Forward results computed in later

hardware design to eliminate hazard.

Kill earlier instructions in pipeline.
Make hardware handle concurrent

UC Regents Spr 2010 © UCB

55

Resolve control hazard by killing instr

STage #{

lnstr Fetch

Sample program
(no delay slot)

J 200
OR R5,R4,R2

{(—% 0x4

PC |\\| | 1Instr

Q »Addr Datal>

N
Compuie new

PC using hardware not shown ...

EECS 150 - L11: Processor Pipelining

Stage #2 Stage #3 *
" Decode & Reg Fetch .
@zoo
»IR »IR
Detect J
instruction, mux
aNOP into IR 1/2
R This hurts
e/ CPL.
—>———>|rsl
> {rs2 rdl]
RN M Canwe do
better?
» Ext » B

7

UC Regents Spr 2010 © UCB

56

The Hazard Resolution Toolkit

*
*
*
X
Y

@

Stall earlier instructions in pipeline.

Forward results computed in later
pipeline stages to earlier stages.

Add new hardware or rearrange
hardware design to eliminate hazard.

Change ISA to eliminate hazard.

Kill earlier instructions in pipeline.

Make hardware handle concurrent
requests to eliminate hazard.

150 - L11: Processor Pipelining UC Regents Spr 2010 © UCB

57

Structural hazard solution: concurrent use

2
“I0/RF” Stage \:“EX” Siage “MEM” Stage WB

Instr Fetch \Decode & Reg Fefch) Execution Memy |
Does not | >

> IR »IR=— IR
come for \ _~L~]WE, MemToReg 1

free ... Mux, Logi o |
\ ‘/A Y

1
"IF” Stage

\‘ aaaaaaaaaa
Addr R P
Dout

| g A B
- en ;SQ SR M Y T
i e \
ID and WB stages use
e B register file in
(d 1 same clock cycle
EECS 150 - L11: Processor Pipelinirllgj UC Regents Spr 2010 © U!B

58

Hazard Diagnosis

Q EECS 150 - L11: Processor Pipelining

UC Regents Spr 2010 © UCB

59

Data Hazards: Read After Write

Read After Write (RAW) hazards.
Instruction 12 expects to read a data
value written by an earlier instruction,
but 12 executes “too early” and reads
the wrong copy of the data.

Classic solution; use forwarding heavily,
fall back on stalling when forwarding won't
work or slows down the critical path too much.

Q EECS 150 - L11: Processor Pipelining UC Regents Spr 2010 © UCB

60

Full bypass network ...

D T T T P P T P PP PP PP PPPPT PRI PTPPPRTPT R S TTEPETEIPEPEIPEPEPRIPE Pigrrnns >
ID (Decode) EX MEM wB
—/IR »IR > IR ¥ > IR™>
WE, MemToReg

Mux, Logi From | € 3 1
(HOgICI™ i |
_)
>

RegFile //’ﬁ/
—p- > rsl ___:><T_)———____—“——————————
—_ > rs2 rdl

1

A

Lr)ws . _
ﬁﬁwd WE dz;ﬁ\¢—:

Ext

EECS 150 - L11: Processor Pipelining UC Regents Spr 2010 © UCB

Data Memory

Addr LI R P>
Dout

Din
E

\

_.\¢/
w

61

Common bug: Multiple forwards ...

ADD R4,R3,R2 OR R2,R3, Rl AND R2,R2, Rl
Whlch do we forward fmm7
.. N TTPTTPIPPIPPRPPRPTIPITS = > CRRNAE S

ID (Decode) EX MEM wB
—/IR »IR > IR ¥ > IR™>
WE, MemToReg
X From < - " A
Mux,Logic WB |
_)
>
RegFile //’ﬁ/]“) R K
— > rsl
-> N rdl / MMMMM leg

1

A

Lr)ws . _
ﬁﬁwd WE dz;ﬁ\¢—:

Ext

\

_.\¢/
w

<
EECS 150 - L11: Processor Pipelining UC Regents Spr 2010 © UCB

Yy

62

Common bug: Multiple forwards Il ...

ADD R4,RO,R2 OR RO, R3, Rl AND RO,R2, Rl
Whlch do we forward fmm7 . U
ID (Decode) EX MEM wB
—/IR »IR > IR ¥ > IR™>
WE, MemToReg
- From < - " A
Mux,Logic WB |
_)
>
RegFile ///ﬁ/]‘* R >
—p > rsl
e o » rs2 rdl / MMMMM leg

1

A

Lr)ws . —_
ﬁﬁwd WE dz;ﬁ\¢—:

Ext

\

_.\¢/
w

<
EECS 150 - L11: Processor Pipelining UC Regents Spr 2010 © UCB

Yy

63

LW and Hazards

Tvpe Instructions

arithmetic addu, subu, addiu

logical ar{d, andi, or, ori, Xor, Xori,
Tui

shift s, sra, srl

compare slt, slti, sltu, slti |

control beq, bne, b 1 T, jﬁ

data transfer @z

Other: break

/

Q EECS 150 - L11: Processor Pipelining

No load
“delay slot”

UC Regents Spr 2010 © UCB

64

Questions about LW and forwarding

ADDIU R1 R1 24

OR R3,R3,R2 LW R1 128(R29)

_.Do we need to stall ?
.. s CLITTTTTrrepswayny & SPEPIVEIPEETTRVIVEITEY = (PPTPS
ID (Decode) EX MEM wB
—/IR »IR > IR ¥ > IR™>
WE, MemToReg
; From 3 > . A
Mux,Logic WB |
_)
>
RegFile //’ﬁ/]‘* R >
—p > rsl
-> >l rs2 rdl/ MMMMM leg

1

A

Lr)ws . —_
ﬁﬁwd WE dz;ﬁ\¢—:

Ext

\

_.\¢/
w

<
EECS 150 - L11: Processor Pipelining UC Regents Spr 2010 © UCB

Yy

65

Questions about LW and forwarding

ADDIU R1 R1 24 LW R1 128(R29) OR R1,R3,R1
Do we need to stall ?
......................... | DDdNEXMN>
(Decode) MEM WB
—/IR »IR > IR ¥ > IR™>
WE, MemToReg
: From < p A
Mux,Logic WB |
—
>
RegFile //’ﬁ/]‘* R >
—p > rsl
- > rs2 rdl/ ‘_; MMMMM leg
s —>
ﬁﬁwd WErdzgv\¢—:
-

Ext

< v
EECS 150 - L11: Processor Pipelining UC Regents Spr 2010 © UCB

_.\¢/
w

66

Resolving a RAW hazard by stalling

STage #1 Stage #2 Stage #3 *
lnstr Feteh | Decode & Reg Fetch |
Sample program IR% OR R5(R4)R2 | | ADD(R4)R3,R2
(\/ IR IR
ADD R4 ’ R3 / R2) Keep execun"g LQT/AVDD Proceed 1» |
OR R5,R4,R2 [“| OR instruction WB stage, so that R4
[| untilR4is ready. is written to regfile
4 oxe Until then, send '
[] < A New datapath
e hardware

PC

IIIII

» Addr Data

ws

wd

rd2|

WE

NOPS toIR 2/3." 4
rsll!egFile
_)Ar, rs2 rdl]
—<
—

— |

Ext

Freeze PC and IR

EECS 150 - L11: Processor Pipelining

Gf

until stall is over.

Y

(1) Mux into IR

2/3

to feed in NOP.

(2) Write enable
on PC and IR 1/2

UC Regents Spr 2010 © UCB

67

Branches and Hazards

Type

Instructions

arithmetic

addu, subu, addiu

logical

and, andi, or, ori, Xor, Xori,
Tai

Single —

sll, sra, srl

slt, sld, sloa, sl

“delay slot” N o

beg, bne, bgez, bltz, j, jr, jal

data transfer

Iw, sw

Other:

break

control
Q EECS 150 - L11: Processor Pipelining

UC Regents Spr 2010 © UCB

68

Recall: Control hazard and hardware

: Stage #1 Stage #2 Stage #3 *
. Instr Fetch " “Decode & Reg Fetch |
To branch IR IR
control logic ~—|
{«% 0x4

Q EECS 150 - L11: Processor Pipelining UC Regents Spr 2010 © UCB

69

Recall: After more hardware, change ISA

.........................)c();(CECRREREEIEEELICLIELEY = CETERPr =
IF (Fetch) ID (Decode) i EX (ALU) > MEM WB
4@4%4 —|IR > IR > IR IR
I8 If we change ISA, can we always let 12
z complete ("branch delay slot”) and
ol —fhcr paca eliminate the control hazard.

Sample Program Timg: t1 t2 t3 t4 t5 t6 t7 t8

(ISA w/o branch Ins - 1D stage
delay slot) Il; IF EX MEM WB computes

I1l: BEQ R4,R3,25 @ ¥ if branch
D nems, I3: is taken
I2: AND R6,R5,R4 I4:

I3: SUB R1,R9,R8 : If branch is taken, this

I5: instruction MUST NOT
(d I16: complete!

EECS 150 - L11: Processor Pipelining UC Regents Spr 2010 © UCB

70

Question about branch and forwards:

BEQ R1 R3 label

OR R3,R3,R1

WI" this work as shown?)‘ N .
ID (Decode) EX | MEM [JWB
> IR IR > IR
To branch WE, MemToReg
control logic < A
Mux, Logic|€« € ?
_)1\
o
RegFile - o R ¥
—p- > rsl /// /ﬁ/ }
- J reo rd1 ——>—"] '_)‘\ MMMMM Lg
e £d2 S >
Ve
j* 5
Ext T
& 24

Gf

EECS 150 - L11: Processor Pipelining

UC Regents Spr 2010 © UCB

71

Lessons learned

X

Pipelining is hard

Study every instruction

X
9'6 Write test code in advance
X

Think about interactions ...

Q EECS 150 - L11: Processor Pipelining UC Regents Spr 2010 © UCB

72

Lessons learned

> Pipelining is hard

élé Study every instruction

Write test code in advance

between forwarding, branch and
jump delay slots, RO issues
LW issues ... a long list!

9'6 Think about interactions ..
& ..

UC Regents Spr 2010 © UCB

73

Control Implementation

74

Recall: What is single cycle control?

SEE | qual—y Combinational Logic
m .
i (Only Gates, No Flip Flops)
Addr Datal—X Just specity logic functions!
RegDest PCSrc
RegWr
ExtOp MemToReg
ALUsrc MemWr
. RegFile ALUctr
5;@ zzl_ i ;3;)\43; Oi \\
5 WS 32 S\L‘ 1 Data Memory 5
rdz \\ i Addr 32
|]T A;:SZT) wd WE)Equal - Dout
RegDest T T Ext T 432 WE T
RegWr ExtOp ALUsrc T I MemToReg
MemWr
< X - v

Gf

EECS 150 - L11: Processor Pipelining

UC Regents Spr 2010 © UCB

75

In pipelines, all IR registers are used

Equal —> Combinational Logic
(Only Gates, No Flip Flops)

(add extra state outside!)

RegDest PCSTrC
RegWr
ExtOp MemToReg

A “conceptual” design -- for shortest critical
path, IR registers may hold decoded info,
(d not the complete 32-bit instruction

ssor Pipelining UC Regents Spr 2010 © UCB

76

Exceptions and Interrupts

Exception: Anunusual event happens to an
instruction during its execution. Examples: divide
by zero, undefined opcode.

Interrupt: Hardware signal to switch the processor to
a new instruction stream. Example: a sound card
interrupts when it needs more audio output samples
(an audio “click” happens if it is left waiting).

Q EECS 150 - L11: Processor Pipelining UC Regents Spr 2010 © UCB

77

Challenge: Precise Interrupt / Exception

Definition:

It must appear as if an/interrupt'is taken between
two instructions (say'l,and I.,)

e the effect of all instructions up to and including I is
totally complete
e no effect of any instruction after I, has taken place

The interrupt handler either aborts the program or
restartsitat I, .

Follows from the “contract” between
the architect and the programmer ...

Q EECS 150 - L11: Processor Pipelining UC Regents Spr 2010 © UCB

78

Precise Exceptions in Static Pipelines

Commit
Point-
Inst. | | || pecode _ﬁ Data: | [|
Illegal
Seleft Opcode

Cause

> > > // E EPC
Kill F Kill D Kill E Asynchronous | .
Stage Stage Stage Interrupts .

Key observation: architected state only
change in memory and register write stages.

Q EECS 150 - L11: Processor Pipelining UC Regents Spr 2010 © UCB

DcZ:ta Adtdr L Kill
xcep Liteback

Handler PC Address
PQ Exceptions I

79

Thursday:

Lec #12: Project Introduction: Memory Blocks, Project
Thr 2/25 ||Specification:
Reading: Pages 111 thru 137 of the Virtex-5 User's Guide

Q EECS 150 - L11: Processor Pipelining UC Regents Spr 2010 © UCB

80

