
UC Regents Spr 2010 © UCBEECS 150 - L11: Processor Pipelining

2010-2-23
John Wawrzynek

EECS 150 -- Digital Design
Lecture 11-- Processor Pipelining

www-inst.eecs.berkeley.edu/~cs150

Today’s lecture by John Lazzaro

1

UC Regents Spr 2010 © UCBEECS 150 - L11: Processor Pipelining

Today: Pipelining
How to apply the performance
equation to our single-cycle CPU.

Why pipelining is hard: data hazards,
control hazards, structural hazards.

Pipelining: an idea from assembly
line production applied to CPU design

Visualizing pipelines to evaluate
hazard detection and resolution.

A tool kit for hazard resolution.
2

UC Regents Spr 2010 © UCBEECS 150 - L11: Processor Pipelining

New successful instruction sets are rare

instruction set

software

hardware

Implementors suffer with original sins of ISAs,
to support the installed base of software.

3

UC Regents Spr 2010 © UCBEECS 150 - L11: Processor Pipelining

define: The Architect’s Contract
To the program, it appears that
instructions execute in the correct
order defined by the ISA.

What the machine actually does is
up to the hardware designers, as
long as the contract is kept.

As each instruction completes, the
machine state (regs, mem) appears to
the program to obey the ISA.

Goal: Keep contract and run programs faster.

4

UC Regents Spr 2010 © UCBEECS 150 - L11: Processor Pipelining

Performance Measurement
(as seen by a CPU designer)

Q. Why do we care about a program’s performance?

A. We want the CPU we are designing to run it well !

5

UC Regents Spr 2010 © UCBEECS 150 - L11: Processor Pipelining

Step 1: Analyze the right measurement!

CPU Time:
Time the CPU spends running
program under measurement.

Response Time:

Total time: CPU Time + time
spent waiting (for disk, I/O, ...).

Guides
CPU
design

Guides
system
design

 Measuring CPU time (Unix):
% time <program name>
25.77u 0.72s 0:29.17 90.8%

6

UC Regents Spr 2010 © UCBEECS 150 - L11: Processor Pipelining

 CPU time: Proportional to Instruction Count

CPU time
Program

Machine Instructions
Program

∝

Rationale: Every
additional

instruction you
execute takes time.

Q. How does an architect
influence the number of
machine instructions
needed to run an algorithm?
A. Create new instructions:
instruction set architect.

Q. Static count?
(lines of program printout)
Or dynamic count?
(trace of execution)

A. Dynamic.

Q. Once ISA is set, who
can influence instruction
count?
A. Compiler writer,
application developer.

7

UC Regents Spr 2010 © UCBEECS 150 - L11: Processor Pipelining

 CPU time: Proportional to Clock Period

Time
Program

Time
One Clock Period

∝

Q. What ultimately limits
an architect’s ability to
reduce clock period ?

A. Clock-to-Q, setup times.

Q. How can architects
(not technologists)
reduce clock period?
A. Shorten the machine’s
critical path.

Rationale:
We measure each instruction’s

execution time in “number of cycles”.
By shortening the period for

each cycle, we shorten execution time.

8

UC Regents Spr 2010 © UCBEECS 150 - L11: Processor Pipelining

 Completing the performance equation

Seconds
Program

 Instructions
Program

= Seconds
Cycle

We need all three
terms, and only
these terms, to

compute CPU Time!

When is it OK to compare clock rates?

What factors make
different programs
have different CPIs?

Instruction mix varies.

Cache behavior varies.

Branch prediction varies.

“CPI” -- The Average
Number of Clock

Cycles Per Instruction
For the Program

 Instruction
Cycles

9

UC Regents Spr 2010 © UCBEECS 150 - L11: Processor Pipelining

Consider Lecture 10 single-cycle CPU ...

All instructions take 1 cycle to execute
every time they run.

CPI of any program running on machine? 1.0

“average CPI for the program” is a
more-useful concept for more
complicated machines ...

10

UC Regents Spr 2010 © UCBEECS 150 - L11: Processor Pipelining

 Consider machine with a data cache ...

 Instructions
Program

= Seconds
Cycle

A program’s load
instructions “stride”

through every
memory address.

The cache never “hits”,
so every load goes to

DRAM (100x slower than
loads that go to cache).

Thus, the average number of cycles for load
instructions is higher for this program.

 Instruction
Cycles

Thus, the average number of cycles for all
instructions is higher for this program.

Seconds
Program

Thus, program takes longer to run!

11

UC Regents Spr 2010 © UCBEECS 150 - L11: Processor Pipelining

 Final thoughts: Performance Equation

Seconds
Program

 Instructions
Program

= Seconds
Cycle Instruction

Cycles

Goal is to
optimize
execution
time, not
individual
equation

terms.

The CPI of
the

program.
Reflects

the
program’s
instruction

mix.

Machines
are

optimized
with

respect to
program

workloads.

Clock
period.

Optimize
jointly
with

machine
CPI.

12

UC Regents Spr 2010 © UCBEECS 150 - L11: Processor Pipelining

Pipelining

13

UC Regents Spr 2010 © UCBEECS 150 - L11: Processor Pipelining

Clocking methodology ...

Processor uses
synchronous logic
design (a “clock”).

!"#$%&'())* ++,!-.)'/ 012-)34$5$%& 67&1'8

!"#$%&'

()#*#&&'&+,-+.'*/#&+0-12'*,'*3+

#

4 5+! ,/$'60&7"89+:+,/$'6$;"9+:+,/$'6.',;%9

5+! #0&7"8 :+#$;" :+#.',;%

0&7

f T
1 MHz 1 μs

10 MHz 100 ns
100 MHz 10 ns

1 GHz 1 ns

All state elements act
like positive edge-
triggered flip flops.

D Q

clk
14

UC Regents Spr 2010 © UCBEECS 150 - L11: Processor Pipelining

Memory and register file semantics ...

32
rd1

RegFile

32
rd2

WE32
wd

5
rs1

5
rs2

5
ws

Reads are combinational:
Put a stable address on
input, a short time later
data appears on output.

32
Dout

Data Memory

WE32
Din

32
Addr

Writes are clocked: If WE
is high, memory Addr
(or register file ws)
captures memory Din
(or register file wd) on
positive edge of clock.

Note: May not be best choice for project.
15

UC Regents Spr 2010 © UCBEECS 150 - L11: Processor Pipelining

Recall: A single-cycle processor

rd1

RegFile

rd2

WE
wd

rs1

rs2

ws

D

PC

Q

+

0x4

Dout

Data Memory

WE

Din

Addr

MemToReg

Addr Data

Instr

Mem
32A

L

U

32

32

op

Ext

Seconds
Program

 Instructions
Program

= Seconds
Cycle Instruction

Cycles

CPI == 1
This is good.

Slow.
This is bad.

Challenge: Speed up clock while keeping CPI == 1

16

UC Regents Spr 2010 © UCBEECS 150 - L11: Processor Pipelining

 A MIPS R-format CPU design

32
rd1

RegFile

32
rd2

WE32
wd

5
rs1

5
rs2

5
ws

32A
L
U

32

32

op

opcode rs rt rd functshamt

Decode fields to get : ADD $8 $9 $10

Logic

17

UC Regents Spr 2010 © UCBEECS 150 - L11: Processor Pipelining

 How data flows after posedge

32
rd1

RegFile

32
rd2

WE32
wd

5
rs1

5
rs2

5
ws

32A
L
U

32

32

op

Logic

Addr Data

Instr
Mem

D

PC

Q+

0x4

18

UC Regents Spr 2010 © UCBEECS 150 - L11: Processor Pipelining

 Next posedge: Update state and repeat

32
rd1

RegFile

32
rd2

WE32
wd

5
rs1

5
rs2

5
ws

D

PC

Q

19

UC Regents Spr 2010 © UCBEECS 150 - L11: Processor Pipelining

Observation: Logic idle most of cycle

rd1

RegFile

rd2

WE
wd

rs1

rs2

ws

D

PC

Q

+

0x4

Dout

Data Memory

WE

Din

Addr

MemToReg

Addr Data

Instr

Mem
32A

L

U

32

32

op

Ext

For most of cycle, ALU is either “waiting” for
its inputs, or “holding” its output

Ideal: a CPU architecture where each part is always “working”.

20

UC Regents Spr 2010 © UCBEECS 150 - L11: Processor Pipelining

Inspiration: Automobile assembly line
Assembly line moves on a steady clock.

Each station does the same task on each car.
Car

body
shell

Car
chassis

Merge
station

Bolting
station

The
clock

21

UC Regents Spr 2010 © UCBEECS 150 - L11: Processor Pipelining

Lessons from car assembly lines

Faster line movement yields more
cars per hour off the line.

Faster line movement requires more
stages, each doing simpler tasks.

To maximize efficiency, all stages
should take same amount of time
(if not, workers in fast stages are idle)

“Filling”, “flushing”, and “stalling”
assembly line are all bad news.

22

UC Regents Spr 2010 © UCBEECS 150 - L11: Processor Pipelining

Key analogy: The instruction is the car

D

PC

Q

+

0x4

Addr Data

Instr

Mem

IR IR IR

Instruction Fetch

IR

Pipeline Stage #1 Stage #2

Controls
hardware

in
stage 2

Stage #3

Controls
hardware

in
stage 3

Stage #4

Controls
hardware

in
stage 4

Stage #5

Controls
hardware

in
stage 5

“Data-stationary control”

23

UC Regents Spr 2010 © UCBEECS 150 - L11: Processor Pipelining

Example: Decode & Register Fetch stage

D

PC

Q

+

0x4

Addr Data

Instr

Mem

IR

Instr Fetch

Pipeline Stage #1

rd1

RegFile

rd2

WE
wd

rs1

rs2

ws

Ext

IR

B

A

M

Stage #2

Decode & Reg Fetch

IR

Stage #3

ADD R4,R3,R2OR R7,R6,R5SUB R10,
 R9,R8

ADD R4,R3,R2
OR R7,R6,R5
SUB R10,R9,R8

A sample program

R’s chosen so that
instructions are

independent - like
cars on the line.

24

UC Regents Spr 2010 © UCBEECS 150 - L11: Processor Pipelining

Decode & Reg Fetch

Performance Equation and Pipelining

rd1

RegFile

rd2

WE
wd

rs1

rs2

ws

D

PC

Q

+

0x4

Addr Data

Instr

Mem

Ext

IR IR IR

B

A

M

Instr Fetch Stage #3

Seconds
Program

 Instructions
Program= Seconds

Cycle Instruction
Cycles

To get shortest
clock period,

balance the work
to do in each

pipeline stage.

CPI == 1
Once pipe is fill,
one instruction
completes per

cycle

Clock period is
shorter

Less work to do
in each cycle

25

UC Regents Spr 2010 © UCBEECS 150 - L11: Processor Pipelining

Hazards: An instruction is not a car ...

rd1

RegFile

rd2

WE
wd

rs1

rs2

ws

D

PC

Q

+

0x4

Addr Data

Instr

Mem

Ext

IR IR IR

B

A

M

Instr Fetch

Stage #1 Stage #2 Stage #3

Decode & Reg Fetch

ADD R4,R3,R2OR R5,R4,R2

An example of a
“hazard” -- we must

(1) detect and
(2) resolve all hazards

to make a CPU that
matches ISA

R4 not written yet wrong value of
R4 fetched from
RegFile, contract
with programmer
broken! Oops! ADD R4,R3,R2

OR R5,R4,R2

New sample program

26

UC Regents Spr 2010 © UCBEECS 150 - L11: Processor Pipelining

Decode & Reg Fetch

Performance Equation and Hazards

rd1

RegFile

rd2

WE
wd

rs1

rs2

ws

D

PC

Q

+

0x4

Addr Data

Instr

Mem

Ext

IR IR IR

B

A

M

Instr Fetch Stage #3

Seconds
Program

 Instructions
Program= Seconds

Cycle Instruction
Cycles

“Software slows
the machine

down”
Seymour Cray

Some ways to
cope with hazards

makes CPI > 1
“stalling pipeline”

Added logic to
detect and resolve
hazards increases

clock period

27

UC Regents Spr 2010 © UCBEECS 150 - L11: Processor Pipelining

A (simplified) 5-stage pipelined CPU

rd1

RegFile

rd2

WE
wd

rs1

rs2

ws

D

PC

Q

+

0x4

Addr Data

Instr

Mem

Ext

IR IR

B

A

M

Instr Fetch

“IF” Stage “ID/RF” Stage

Decode & Reg Fetch

1 2

“EX” Stage
Execution

32A

L

U

32

32

op

IR

Y

M

3

IR

Dout

Data Memory

WE

Din

Addr

MemToReg

R

“MEM” Stage
Memory

WE, MemToReg

4
WB
5

Write
Back

Mux,Logic

28

UC Regents Spr 2010 © UCBEECS 150 - L11: Processor Pipelining

Sometimes, “contract” is a challenge

rd1

RegFile

rd2

WE
wd

rs1

rs2

ws

D

PC

Q

+

0x4

Addr Data

Instr

Mem

Ext

IR IR

B

A

M

Instr Fetch

“IF” Stage “ID/RF” Stage

Decode & Reg Fetch

1 2

“EX” Stage
Execution

32A

L

U

32

32

op

IR

Y

M

3

IR

Dout

Data Memory

WE

Din

Addr

MemToReg

R

“MEM” Stage
Memory

WE, MemToReg

4
WB
5

Write
Back

Mux,Logic

LW R4,0(R0)
OR R5,R4,R2

Sample Program
LW R4,
0(R0)

OR R5,R4,R2

... but we haven’t
even started the
load yet!

One approach: change
the contract!

29

UC Regents Spr 2010 © UCBEECS 150 - L11: Processor Pipelining

MIPS LW contract: Delayed Loads

Instruction
Fetch

Instruction
Decode

Operand
Fetch

Execute

Result
Store

Next
Instruction

Fetch the load inst from memory

“Retrieve” register value: $2

Compute memory address: 32 + $2

Load memory address contents into: $1

Prepare to fetch instr that follows
the LW in the program. Depending on
load semantics, new $1 is visible to
that instr, or not until the following
instr (”delayed loads”).

Decode fields to get : LW $1, 32($2)

opcode rs rt offset “I-Format”

30

UC Regents Spr 2010 © UCBEECS 150 - L11: Processor Pipelining

After we change the contract ...

rd1

RegFile

rd2

WE
wd

rs1

rs2

ws

D

PC

Q

+

0x4

Addr Data

Instr

Mem

Ext

IR IR

B

A

M

Instr Fetch

“IF” Stage “ID/RF” Stage

Decode & Reg Fetch

1 2

“EX” Stage
Execution

32A

L

U

32

32

op

IR

Y

M

3

IR

Dout

Data Memory

WE

Din

Addr

MemToReg

R

“MEM” Stage
Memory

WE, MemToReg

4
WB
5

Write
Back

Mux,Logic

LW R4,0(R0)
OR R5,R4,R2

Sample Program
LW R4,
0(R0)

OR R5,R4,R2

... “delayed load”
contract does not
guarantee new R4
is seen.

Only partially solves
problem ... soon, we

finish the story.

31

UC Regents Spr 2010 © UCBEECS 150 - L11: Processor Pipelining

Visualizing Pipelines

32

UC Regents Spr 2010 © UCBEECS 150 - L11: Processor Pipelining

Pipeline Representation #1: Timeline

D

PC

Q

+

0x4

Addr Data

Instr

Mem

IR IR

IF (Fetch) ID (Decode) EX (ALU)

IR IR

MEM WB

ADD R4,R3,R2

OR R7,R6,R5

SUB R1,R9,R8
XOR R3,R2,R1

AND R6,R5,R4
I1:
I2:
I3:
I4:
I5:

Sample Program

IF ID

IF

EX

ID

IF

MEM

EX

ID

IF

WB

MEM

EX

IF
ID

WB

MEM

ID
EX

IF

WB

EX
MEM

ID
MEM
WB

EX

I1:
I2:
I3:
I4:
I5:

t1 t2 t3 t4 t5 t6 t7 t8Time:
Inst

I6:

Good for visualizing pipeline fills.

Pipeline
is “full”

33

UC Regents Spr 2010 © UCBEECS 150 - L11: Processor Pipelining

Pipeline
is “full”

Good for visualizing pipeline stalls.

Representation #2: Resource Usage

D

PC

Q

+

0x4

Addr Data

Instr

Mem

IR IR IR IR

ADD R4,R3,R2

OR R7,R6,R5

SUB R1,R9,R8
XOR R3,R2,R1

AND R6,R5,R4
I1:
I2:
I3:
I4:
I5:

Sample Program

I1 I2

I1

I3

I2

I1

I4

I3

I2

I1

I5

I4

I3

I1
I2

IF:
ID:
EX:
MEM:
WB:

t1 t2 t3 t4 t5 t6 t7 t8Time:
Stage

IF (Fetch) ID (Decode) EX (ALU) MEM WB

I5

I4

I2
I3

I6

I5

I3
I4

I6

I7

I4
I5

I6

I7

I8

34

UC Regents Spr 2010 © UCBEECS 150 - L11: Processor Pipelining

Hazard Taxonomy

35

UC Regents Spr 2010 © UCBEECS 150 - L11: Processor Pipelining

Structural Hazards

Several pipeline stages need to use the
same hardware resource at the same time.

Solution #1: Add extra copies of
the resource (only works sometime).

Solution #2: Change resource so
that it can handle concurrent use.

Solution #3: Stages “take turns”
by stalling parts of the pipeline.

36

UC Regents Spr 2010 © UCBEECS 150 - L11: Processor Pipelining

rd1

RegFile

rd2

WE
wd

rs1

rs2

ws

Ext

IR IR

B

A

M

“IF” Stage “ID/RF” Stage “EX” Stage

32A

L

U

32

32

op

IR

Y

M

IR

R

“MEM” Stage

WE, MemToReg

WB

Mux,Logic

32
Dout

Data Memory

WE32

Din

Addr

MemToReg

PC

To branch
logic

Structural Hazard Example: One Memory

Used by
IF stage

and
MEM stage

37

UC Regents Spr 2010 © UCBEECS 150 - L11: Processor Pipelining

A solution: “Extra copies” of memory

rd1

RegFile

rd2

WE
wd

rs1

rs2

ws

D

PC

Q

+

0x4

Addr Data

Instr

Mem

Ext

IR IR

B

A

M

Instr Fetch

“IF” Stage “ID/RF” Stage

Decode & Reg Fetch

1 2

“EX” Stage
Execution

32A

L

U

32

32

op

IR

Y

M

3

IR

Dout

Data Memory

WE

Din

Addr

MemToReg

R

“MEM” Stage
Memory

WE, MemToReg

4
WB
5

Write
Back

Mux,Logic

I and D caches
 are a

hybrid solution

38

UC Regents Spr 2010 © UCBEECS 150 - L11: Processor Pipelining

Alternatively: Concurrent use ...

rd1

RegFile

rd2

WE
wd

rs1

rs2

ws

D

PC

Q

+

0x4

Addr Data

Instr

Mem

Ext

IR IR

B

A

M

Instr Fetch

“IF” Stage “ID/RF” Stage

Decode & Reg Fetch

1 2

“EX” Stage
Execution

32A

L

U

32

32

op

IR

Y

M

3

IR

Dout

Data Memory

WE

Din

Addr

MemToReg

R

“MEM” Stage
Memory

WE, MemToReg

4
WB
5

Write
Back

Mux,Logic

ID and WB stages use
register file in

same clock cycle

39

UC Regents Spr 2010 © UCBEECS 150 - L11: Processor Pipelining

Data Hazards: 3 Types (RAW, WAR, WAW)

Several pipeline stages read or write the
same data location in an incompatible way.

Read After Write (RAW) hazards.
Instruction I2 expects to read a data
value written by an earlier instruction,
but I2 executes “too early” and reads
the wrong copy of the data.

Note “data value”, not “register”. Data hazards are
possible for any architected state (such as main
memory). In practice, main memory hazard
avoidance is the job of the memory system.

40

UC Regents Spr 2010 © UCBEECS 150 - L11: Processor Pipelining

Recall: RAW example

rd1

RegFile

rd2

WE
wd

rs1

rs2

ws

D

PC

Q

+

0x4

Addr Data

Instr

Mem

Ext

IR IR IR

B

A

M

Instr Fetch

Stage #1 Stage #2 Stage #3

Decode & Reg Fetch

ADD R4,R3,R2OR R5,R4,R2

R4 not written yet wrong value of
R4 fetched from
RegFile, contract
with programmer
broken! Oops!

ADD R4,R3,R2
OR R5,R4,R2

Sample program

This is what
we mean

when we say
Read After

Write (RAW)
Hazard

41

UC Regents Spr 2010 © UCBEECS 150 - L11: Processor Pipelining

Data Hazards: 3 Types (RAW, WAR, WAW)

Write After Read (WAR) hazards. Instruction
I2 expects to write over a data value after an
earlier instruction I1 reads it. But instead, I2
writes too early, and I1 sees the new value.

Write After Write (WAW) hazards. Instruction
I2 writes over data an earlier instruction I1
also writes. But instead, I1 writes after I2,
and the final data value is incorrect.

WAR and WAW not possible in our 5-stage pipeline.
But are possible in other pipeline designs.

42

UC Regents Spr 2010 © UCBEECS 150 - L11: Processor Pipelining

I1:
I2:
I3:
I4:
I5:

t1 t2 t3 t4 t5 t6 t7 t8Time:
Inst

I6:

Control Hazards: A taken branch/jump

D

PC

Q

+

0x4

Addr Data

Instr

Mem

IR IR

IF (Fetch) ID (Decode) EX (ALU)

IR IR

MEM WB

BEQ R4,R3,25

SUB R1,R9,R8
AND R6,R5,R4

I1:
I2:
I3:

Sample Program
(ISA w/o branch
delay slot) IF ID

IF

EX

ID

IF

MEM WB
EX stage
computes
if branch
is taken

Note: with branch delay slot, I2 MUST
complete, I3 MUST NOT complete.

If branch is taken,
these instructions

MUST NOT complete!
43

UC Regents Spr 2010 © UCBEECS 150 - L11: Processor Pipelining

Hazards Recap

Structural Hazards

Data Hazards (RAW, WAR, WAW)

Control Hazards (taken branches
and jumps)

On each clock cycle, we must detect the presence
of all of these hazards, and resolve them before
they break the “contract with the programmer”.

44

UC Regents Spr 2010 © UCBEECS 150 - L11: Processor Pipelining

Hazard Resolution Tools

45

UC Regents Spr 2010 © UCBEECS 150 - L11: Processor Pipelining

The Hazard Resolution Toolkit

Stall earlier instructions in pipeline.

Kill earlier instructions in pipeline.

Forward results computed in later
pipeline stages to earlier stages.
Add new hardware or rearrange
hardware design to eliminate hazard.

Make hardware handle concurrent
requests to eliminate hazard.

Change ISA to eliminate hazard.

46

UC Regents Spr 2010 © UCBEECS 150 - L11: Processor Pipelining

Resolving a RAW hazard by stalling

rd1

RegFile

rd2

WE
wd

rs1

rs2

ws

D

PC

Q

+

0x4

Addr Data

Instr

Mem

Ext

IR IR IR

B

A

M

Instr Fetch

Stage #1 Stage #2 Stage #3

Decode & Reg Fetch

ADD R4,R3,R2OR R5,R4,R2

Let ADD proceed to
WB stage, so that R4
is written to regfile.

ADD R4,R3,R2
OR R5,R4,R2

Sample program
Keep executing
OR instruction
until R4 is ready.
Until then, send
NOPS to IR 2/3.

Freeze PC and IR
until stall is over.

New datapath
hardware

(1) Mux into IR 2/3
to feed in NOP.

(2) Write enable
on PC and IR 1/2

47

UC Regents Spr 2010 © UCBEECS 150 - L11: Processor Pipelining

The Hazard Resolution Toolkit

Stall earlier instructions in pipeline.

Kill earlier instructions in pipeline.

Forward results computed in later
pipeline stages to earlier stages.
Add new hardware or rearrange
hardware design to eliminate hazard.

Make hardware handle concurrent
requests to eliminate hazard.

Change ISA to eliminate hazard.

48

UC Regents Spr 2010 © UCBEECS 150 - L11: Processor Pipelining

rd1

RegFile

rd2

WE
wd

rs1

rs2

ws

D

PC

Q

+

0x4

Addr Data

Instr

Mem

Ext

IR IR

B

A

M

Instr Fetch

“IF” Stage “ID/RF” Stage

Decode & Reg Fetch

1 2

“EX” Stage
Execution

32A

L

U

32

32

op

IR

Y

M

3

Resolving a RAW hazard by forwarding

ADD R4,R3,R2OR R5,R4,R2
ADD R4,R3,R2
OR R5,R4,R2

Sample program

ALU computes R4 in
the EX stage, so ...Just forward it

back!

Unlike stalling, does
not change CPI. May
hurt cycle time.

49

UC Regents Spr 2010 © UCBEECS 150 - L11: Processor Pipelining

The Hazard Resolution Toolkit

Stall earlier instructions in pipeline.

Kill earlier instructions in pipeline.

Forward results computed in later
pipeline stages to earlier stages.
Add new hardware or rearrange
hardware design to eliminate hazard.

Make hardware handle concurrent
requests to eliminate hazard.

Change ISA to eliminate hazard.

50

UC Regents Spr 2010 © UCBEECS 150 - L11: Processor Pipelining

I1:
I2:
I3:
I4:
I5:

t1 t2 t3 t4 t5 t6 t7 t8Time:
Inst

I6:

Control Hazards: Fix with more hardware

D

PC

Q

+

0x4

Addr Data

Instr

Mem

IR IR

IF (Fetch) ID (Decode) EX (ALU)

IR IR

MEM WB

BEQ R4,R3,25

SUB R1,R9,R8
AND R6,R5,R4

I1:
I2:
I3:

Sample Program
(ISA w/o branch
delay slot) IF ID

IF

EX

ID

IF

MEM WB
EX stage
computes
if branch
is taken

If branch is taken,
these instructions

MUST NOT complete!

If we add hardware, can we
move it here?

51

UC Regents Spr 2010 © UCBEECS 150 - L11: Processor Pipelining

Resolving control hazard with hardware

rd1

RegFile

rd2

WE
wd

rs1

rs2

ws

D

PC

Q

+

0x4

Addr Data

Instr

Mem

Ext

IR IR IR

B

A

M

Instr Fetch

Stage #1 Stage #2 Stage #3

Decode & Reg Fetch

==

To branch
control logic

52

UC Regents Spr 2010 © UCBEECS 150 - L11: Processor Pipelining

I1:
I2:
I3:
I4:
I5:

t1 t2 t3 t4 t5 t6 t7 t8Time:
Inst

I6:

Control Hazards: After more hardware

D

PC

Q

+

0x4

Addr Data

Instr

Mem

IR IR

IF (Fetch) ID (Decode) EX (ALU)

IR IR

MEM WB

BEQ R4,R3,25

SUB R1,R9,R8
AND R6,R5,R4

I1:
I2:
I3:

Sample Program
(ISA w/o branch
delay slot) IF ID

IF

EX MEM WB

If branch is taken, this
instruction MUST NOT

complete!

ID stage
computes
if branch
is taken

If we change ISA, can we always let I2
complete (”branch delay slot”) and

eliminate the control hazard.

53

UC Regents Spr 2010 © UCBEECS 150 - L11: Processor Pipelining

MIPS Delayed Branch: BEQ $1,$2,25

Instruction
Fetch

Instruction
Decode

Operand
Fetch

Execute

Result
Store

Next
Instruction

Fetch branch inst from memory

“Retrieve” register values: $1, $2

Compute if we take branch: $1 == $2 ?

Decode fields to get: BEQ $1, $2, 25

opcode rs rt offset “I-Format”

ALWAYS prepare to fetch instr that
follows the BEQ in the program
(”delayed branch”). IF we take branch,
the instr we fetch AFTER that
instruction is PC + 4 + 100.

PC == “Program Counter”
54

UC Regents Spr 2010 © UCBEECS 150 - L11: Processor Pipelining

The Hazard Resolution Toolkit

Stall earlier instructions in pipeline.

Kill earlier instructions in pipeline.

Forward results computed in later
pipeline stages to earlier stages.
Add new hardware or rearrange
hardware design to eliminate hazard.

Make hardware handle concurrent
requests to eliminate hazard.

Change ISA to eliminate hazard.

55

UC Regents Spr 2010 © UCBEECS 150 - L11: Processor Pipelining

Resolve control hazard by killing instr

rd1

RegFile

rd2

WE
wd

rs1

rs2

ws

D

PC

Q

+

0x4

Addr Data

Instr

Mem

Ext

IR IR IR

B

A

M

Instr Fetch

Stage #1 Stage #2 Stage #3

Decode & Reg Fetch

J 200

J 200
OR R5,R4,R2

Sample program
(no delay slot) Detect J

instruction, mux
a NOP into IR 1/2

Compute new
PC using hardware not shown ...

This hurts
CPI.

Can we do
better?

56

UC Regents Spr 2010 © UCBEECS 150 - L11: Processor Pipelining

The Hazard Resolution Toolkit

Stall earlier instructions in pipeline.

Kill earlier instructions in pipeline.

Forward results computed in later
pipeline stages to earlier stages.
Add new hardware or rearrange
hardware design to eliminate hazard.

Make hardware handle concurrent
requests to eliminate hazard.

Change ISA to eliminate hazard.

57

UC Regents Spr 2010 © UCBEECS 150 - L11: Processor Pipelining

Structural hazard solution: concurrent use

rd1

RegFile

rd2

WE
wd

rs1

rs2

ws

D

PC

Q

+

0x4

Addr Data

Instr

Mem

Ext

IR IR

B

A

M

Instr Fetch

“IF” Stage “ID/RF” Stage

Decode & Reg Fetch

1 2

“EX” Stage
Execution

32A

L

U

32

32

op

IR

Y

M

3

IR

Dout

Data Memory

WE

Din

Addr

MemToReg

R

“MEM” Stage
Memory

WE, MemToReg

4
WB
5

Write
Back

Mux,Logic

ID and WB stages use
register file in

same clock cycle

Does not
come for
free ...

58

UC Regents Spr 2010 © UCBEECS 150 - L11: Processor Pipelining

Hazard Diagnosis

59

UC Regents Spr 2010 © UCBEECS 150 - L11: Processor Pipelining

Data Hazards: Read After Write

Read After Write (RAW) hazards.
Instruction I2 expects to read a data
value written by an earlier instruction,
but I2 executes “too early” and reads
the wrong copy of the data.

Classic solution: use forwarding heavily,
fall back on stalling when forwarding won’t
work or slows down the critical path too much.

60

UC Regents Spr 2010 © UCBEECS 150 - L11: Processor Pipelining

Mux,Logic

Full bypass network ...

rd1

RegFile

rd2

WE
wd

rs1

rs2

ws

Ext

IR IR

B

A

M

32A

L

U

32

32

op

IR

Y

M

IR

Dout

Data Memory

WE

Din

Addr

MemToReg

R

WE, MemToReg

ID (Decode) EX MEM WB

From
WB

61

UC Regents Spr 2010 © UCBEECS 150 - L11: Processor Pipelining

Mux,Logic

Common bug: Multiple forwards ...

rd1

RegFile

rd2

WE
wd

rs1

rs2

ws

Ext

IR IR

B

A

M

32A

L

U

32

32

op

IR

Y

M

IR

Dout

Data Memory

WE

Din

Addr

MemToReg

R

WE, MemToReg

ID (Decode) EX MEM WB

From
WB

ADD R4,R3,R2 OR R2,R3,R1 AND R2,R2,R1

Which do we forward from?

62

UC Regents Spr 2010 © UCBEECS 150 - L11: Processor Pipelining

Mux,Logic

Common bug: Multiple forwards II ...

rd1

RegFile

rd2

WE
wd

rs1

rs2

ws

Ext

IR IR

B

A

M

32A

L

U

32

32

op

IR

Y

M

IR

Dout

Data Memory

WE

Din

Addr

MemToReg

R

WE, MemToReg

ID (Decode) EX MEM WB

From
WB

ADD R4,R0,R2 OR R0,R3,R1 AND R0,R2,R1

Which do we forward from?

63

UC Regents Spr 2010 © UCBEECS 150 - L11: Processor Pipelining

LW and Hazards

No load
“delay slot”

64

UC Regents Spr 2010 © UCBEECS 150 - L11: Processor Pipelining

Mux,Logic

Questions about LW and forwarding

rd1

RegFile

rd2

WE
wd

rs1

rs2

ws

Ext

IR IR

B

A

M

32A

L

U

32

32

op

IR

Y

M

IR

Dout

Data Memory

WE

Din

Addr

MemToReg

R

WE, MemToReg

ID (Decode) EX MEM WB

From
WB

ADDIU R1 R1 24 LW R1 128(R29)

Do we need to stall ?
OR R3,R3,R2

65

UC Regents Spr 2010 © UCBEECS 150 - L11: Processor Pipelining

Mux,Logic

rd1

RegFile

rd2

WE
wd

rs1

rs2

ws

Ext

IR IR

B

A

M

32A

L

U

32

32

op

IR

Y

M

IR

Dout

Data Memory

WE

Din

Addr

MemToReg

R

WE, MemToReg

ID (Decode) EX MEM WB

From
WB

ADDIU R1 R1 24 LW R1 128(R29)

Do we need to stall ?
OR R1,R3,R1

Questions about LW and forwarding

66

UC Regents Spr 2010 © UCBEECS 150 - L11: Processor Pipelining

Resolving a RAW hazard by stalling

rd1

RegFile

rd2

WE
wd

rs1

rs2

ws

D

PC

Q

+

0x4

Addr Data

Instr

Mem

Ext

IR IR IR

B

A

M

Instr Fetch

Stage #1 Stage #2 Stage #3

Decode & Reg Fetch

ADD R4,R3,R2OR R5,R4,R2

Let ADD proceed to
WB stage, so that R4
is written to regfile.

ADD R4,R3,R2
OR R5,R4,R2

Sample program
Keep executing
OR instruction
until R4 is ready.
Until then, send
NOPS to IR 2/3.

Freeze PC and IR
until stall is over.

New datapath
hardware

(1) Mux into IR 2/3
to feed in NOP.

(2) Write enable
on PC and IR 1/2

67

UC Regents Spr 2010 © UCBEECS 150 - L11: Processor Pipelining

Branches and Hazards

Single
“delay slot”

68

UC Regents Spr 2010 © UCBEECS 150 - L11: Processor Pipelining

Recall: Control hazard and hardware

rd1

RegFile

rd2

WE
wd

rs1

rs2

ws

D

PC

Q

+

0x4

Addr Data

Instr

Mem

Ext

IR IR IR

B

A

M

Instr Fetch

Stage #1 Stage #2 Stage #3

Decode & Reg Fetch

==

To branch
control logic

69

UC Regents Spr 2010 © UCBEECS 150 - L11: Processor Pipelining

I1:
I2:
I3:
I4:
I5:

t1 t2 t3 t4 t5 t6 t7 t8Time:
Inst

I6:

Recall: After more hardware, change ISA

D

PC

Q

+

0x4

Addr Data

Instr

Mem

IR IR

IF (Fetch) ID (Decode) EX (ALU)

IR IR

MEM WB

BEQ R4,R3,25

SUB R1,R9,R8
AND R6,R5,R4

I1:
I2:
I3:

Sample Program
(ISA w/o branch
delay slot) IF ID

IF

EX MEM WB

If branch is taken, this
instruction MUST NOT

complete!

ID stage
computes
if branch
is taken

If we change ISA, can we always let I2
complete (”branch delay slot”) and

eliminate the control hazard.

70

UC Regents Spr 2010 © UCBEECS 150 - L11: Processor Pipelining

Mux,Logic

Question about branch and forwards:

rd1

RegFile

rd2

WE
wd

rs1

rs2

ws

Ext

IR IR

B

A

M

32A

L

U

32

32

op

IR

Y

M

IR

Dout

Data Memory

WE

Din

Addr

MemToReg

R

WE, MemToReg

ID (Decode) EX MEM WB

BEQ R1 R3 label

Will this work as shown?
OR R3,R3,R1

==

To branch
control logic

71

UC Regents Spr 2010 © UCBEECS 150 - L11: Processor Pipelining

Lessons learned

Pipelining is hard

Write test code in advance

Study every instruction

Think about interactions ...

72

UC Regents Spr 2010 © UCBEECS 150 - L11: Processor Pipelining

Lessons learned

Pipelining is hard

Write test code in advance

Study every instruction

Think about interactions ...
between forwarding, branch and
jump delay slots, R0 issues
LW issues ... a long list!

73

UC Regents Spr 2010 © UCBEECS 150 - L11: Processor Pipelining

Control Implementation

74

UC Regents Spr 2010 © UCBEECS 150 - L11: Processor Pipelining

Recall: What is single cycle control?

32
rd1

RegFile

32
rd2

WE32
wd

5
rs1

5
rs2

5
ws

ExtRegDest

ALUsrcExtOp

ALUctr

32A

L

U

32

32

op

MemToReg

32
Dout

Data Memory

WE32

Din

Addr

MemWr

Equal

RegWr

32
Addr Data

Instr
Mem

Equal

RegDest
RegWr

ExtOp
ALUsrc MemWr

MemToReg

PCSrc

Combinational Logic
(Only Gates, No Flip Flops)
Just specify logic functions!

75

UC Regents Spr 2010 © UCBEECS 150 - L11: Processor Pipelining

In pipelines, all IR registers are used

IR IR IR IR

ID (Decode) EX MEM WB

Equal

RegDest
RegWr

ExtOp MemToReg

PCSrc

Combinational Logic
(Only Gates, No Flip Flops)

(add extra state outside!)

A “conceptual” design -- for shortest critical
path, IR registers may hold decoded info,

not the complete 32-bit instruction

76

UC Regents Spr 2010 © UCBEECS 150 - L11: Processor Pipelining

Exceptions and Interrupts
Exception: An unusual event happens to an
instruction during its execution. Examples: divide
by zero, undefined opcode.

Interrupt: Hardware signal to switch the processor to
a new instruction stream. Example: a sound card
interrupts when it needs more audio output samples
(an audio “click” happens if it is left waiting).

77

UC Regents Spr 2010 © UCBEECS 150 - L11: Processor Pipelining

Challenge: Precise Interrupt / Exception

!"#$%&

!"#$%

&'"()*+,-*.//0

123.4-*5+.66+,

788%($9:%;%##<

=%;'>9;?*';@*AB$6C86C"@%"*%D%(B$9C;*E'#*89"#$

9>FG%>%;$%@*9;*+H1H*9;*IJ&*41/KH+*LB$*@9@*;C$*#)CE*

BF*9;*$)%*#BL#%MB%;$*>C@%G#*B;$9G*>9@6N9;%$9%#2

!"#$%

&'()*+)

+2*7D(%F$9C;#*;C$*F"%(9#%O

.2*788%($9:%*C;*'*:%"P*#>'GG*(G'##*C8*F"C?"'>#

A;%*>C"%*F"CLG%>*;%%@%@*$C*L%*#CG:%@

!"#$%"&'$%(#)*+%)

!"#$%

&'"()*+,-*.//0

123.4-*5+.66+1

Q"%(9#%*I;$%""BF$#

,$'-.)$'(//+(%'()'0*'(#'0#$+%%./$'0)'$(1+#'2+$3++#'
$3"'0#)$%.4$0"#) !"#$%&' #()%&'*+,

- ./0%01102.%31%#44%'(".562.'3("%67%.3%#()%'(246)'(8%&' '"
.3.#44$%239740.0

- (3%01102.%31%#($%'(".562.'3(%#1.05%&' /#"%.#:0(%74#20

;/0%'(.05567.%/#()405%0'./05%#<35."%./0%75385#9%35%
50".#5."%'.%#.%&'*+%=

Definition:

Follows from the “contract” between
the architect and the programmer ...

(or exception)

78

UC Regents Spr 2010 © UCBEECS 150 - L11: Processor Pipelining

Precise Exceptions in Static Pipelines

!"#$%&

!"#$%

&'"()*+,-*.//0

123.4-*5+.66+7899%($*:;*<;$%""=>$#
!"#$%&$%'()'*+%,-.)#/%0

!" !"#! $%&' $%& $(
!#)! $*& (+,-./
!$ 01)2! $3& $*& $(
!% !"#! $4& $%& $*
!& 516! $73& $3& $%
!' 8!!! $%& $4& $*

()*+(,+(-./-01(23 7'''*'''* .'''7 ('''. +'''+ (%'''%

-/4*(-/0,#0 -/4*(-/0,"5

9:;<=>?-'=;@?--AB@<

6-/174/078*/--)3*409-/0.7,,71):*0*(0723:/2/8*09*0;7<;043//.
+ =98*0*(04*9-*0/>/1)*7(80(,0:9*/-0784*-)1*7(840?/,(-/
/>1/3*7(801;/1@40,7874;/.0(80/9-:7/-0784*-)1*7(84

!"#$%

&'"()*+,-*.//0

123.4-*5+.66+38?(%>$@:;*A';BC@;D
120$!'()'*3/4)$5#67)*8/-)./0)9

C D:E>'?FG?B@=:;'$EHI<'=;'B=B?E=;?'A;@=E'G:JJ=@'B:=;@',0'<@HI?/
C KFG?B@=:;<'=;'?H-E=?-'B=B?'<@HI?<':L?--=>?'EH@?-'?FG?B@=:;<
C ";M?G@'?F@?-;HE'=;@?--AB@<'H@'G:JJ=@'B:=;@',:L?--=>?':@N?-</
C "$'?FG?B@=:;'H@'G:JJ=@O'AB>H@?'9HA<?'H;>'KP9'-?I=<@?-<&'Q=EE
HEE'<@HI?<&'=;M?G@'NH;>E?-'P9'=;@:'$?@GN'<@HI?

A4B81;-(8()40
!8*/--)3*4

KFG
!

P9
!

P9
";<@R'
0?J ! !?G:>? K 0

!H@H'
0?J ST

KFG
K

P9
K

KFG
0

P9
0

C9)4/

D6C

E7::0F0
G*9</

E7::0H0
G*9</

E7::0D0
G*9</

!::/<9:0
I31(./

IJ/-,:(=
F9*90A..-0
D>1/3*

6C0A..-/440
D>1/3*7(84

E7::0
K-7*/?91@

G/:/1*0
L98.:/-0
6C

!"##$%&

'"$(%

Key observation: architected state only
change in memory and register write stages.

79

UC Regents Spr 2010 © UCBEECS 150 - L11: Processor Pipelining

Thursday:

80

