
Spring 2010 EECS150 - Lec06-CAD1 Page

EECS150 - Digital Design
Lecture 6 - Computer Aided Design

(CAD) - Part I (Logic Synthesis)
Feb 4, 2010

John Wawrzynek

1

Spring 2010 EECS150 - Lec06-CAD1 Page

State Elements

2

Always blocks are the only way to specify the “behavior” of
state elements. Synthesis tools will turn state element

behaviors into state element instances.

module dff(q, d, clk, set, rst);
 input d, clk, set, rst;
 output q;
 reg q;

 always @(posedge clk)
 if (rst)
 q <= 1’b0;
 else if (set)
 q <= 1’b1;
 else
 q <= d;
endmodule

D-flip-flop with synchronous set and reset example:

How would you add an CE (clock enable) input?

keyword

“always @ (posedge clk)” is key
to flip-flop generation.

This gives priority to
reset over set and

set over d.

On FPGAs, maps to native flip-flop.

d s
q

rclk

set

rst

Spring 2010 EECS150 - Lec06-CAD1 Page

Finite State Machines

3






















State Transition Diagram














Implementation Circuit Diagram

Holds a symbol to
keep track of which

bubble the FSM is in.

CL functions to determine output
value and next state based on input

and current state.
out = f(in, current state)

next state = f(in, current state)
What does this one do?

Did you know that every SDS is a FSM?

Spring 2010 EECS150 - Lec06-CAD1 Page

Finite State Machines
module FSM1(clk, rst, in, out);
input clk, rst;
input in;
output out;

// Defined state encoding:
parameter IDLE = 2'b00;
parameter S0 = 2'b01;
parameter S1 = 2'b10;
reg out;
reg [1:0] state, next_state;

// always block for state register
always @(posedge clk)
 if (rst) state <= IDLE;
 else state <= next_state;

4




















Must use reset to force
to initial state.

reset not always shown in STD

out not a register, but assigned in always block

THE register to hold the “state” of the FSM.

Combinational logic
signals for transition.

Constants local
to this module.

A separate always block should be used for combination logic part of FSM. Next
state and output generation. (Always blocks in a design work in parallel.)

Spring 2010 EECS150 - Lec06-CAD1 Page

FSMs (cont.)
// always block for combinational logic portion
always @(state or in)
case (state)
// For each state def output and next
 IDLE : begin
 out = 1’b0;
 if (in == 1’b1) next_state = S0;
 else next_state = IDLE;
 end
 S0 : begin
 out = 1’b0;
 if (in == 1’b1) next_state = S1;
 else next_state = IDLE;
 end
 S1 : begin
 out = 1’b1;
 if (in == 1’b1) next_state = S1;
 else next_state = IDLE;

 end
 default: begin
 next_state = IDLE;
 out = 1’b0;
 end
endcase
endmodule 5






















For each state define:

Each state becomes
a case clause.

Output value(s)
State transition

Use “default” to cover unassigned state.
Usually unconditionally transition to reset state.

Spring 2010 EECS150 - Lec06-CAD1 Page

Example - Parallel to Serial Converter

module ParToSer(ld, X, out, clk);
 input [3:0] X;
 input ld, clk;
 output out;

 reg [3:0] Q;
 wire [3:0] NS;

 assign NS =
(ld) ? X : {Q[0], Q[3:1]};

 always @ (posedge clk)
 Q <= NS;

 assign out = Q[0];
endmodule 6

Specifies the
muxing with
“rotation”

forces Q register (flip-flops) to
be rewritten every cycle

connect output

ld

out
out

Spring 2010 EECS150 - Lec06-CAD1 Page

Parameterized Version

7

module ParToSer(ld, X, out, CLK);
 input [3:0] X;
 input ld, clk;
 output out;
 reg out;
 reg [3:0] Q;
 wire [3:0] NS;

 assign NS =
(ld) ? X : {Q[0], Q[3:1]};

 always @ (posedge clk)
 Q <= NS;

 assign out = Q[0];
endmodule

module ParToSer(ld, X, out, CLK);
 input [N-1:0] X;
 input ld, clk;
 output out;
 reg out;
 reg [N-1:0] Q;
 wire [N-1:0] NS;

 assign NS =
(ld) ? X : {Q[0], Q[N-1:1]};

 always @ (posedge clk)
 Q <= NS;

 assign out = Q[0];
endmodule

Replace all occurrences
of “3” with “N-1”.

parameter N = 4;
Declare a parameter with

default value.
Note: this is not a port.
Acts like a “synthesis-

time” constant.

ParToSer #(.N(8))
 ps8 (...);

ParToSer #(.N(64))
ps64 (...);

Overwrite parameter N at
instantiation.

Parameters give us a way to generalize our designs. A module
becomes a “generator” for different variations. Enables
design/module reuse. Can simplify testing.

Spring 2010 EECS150 - Lec06-CAD1 Page

Generate Loop

8

Permits variable declarations, modules, user defined primitives,
gate primitives, continuous assignments, initial blocks and
always blocks to be instantiated multiple times using a for-loop.

// Gray-code to binary-code converter
module gray2bin1 (bin, gray);
 parameter SIZE = 8;
 output [SIZE-1:0] bin;
 input [SIZE-1:0] gray;

 genvar i;

 generate for (i=0; i<SIZE; i=i+1) begin:bit
 assign bin[i] = ^gray[SIZE-1:i];
 end endgenerate
 endmodule

Loop must have
constant bounds

generate if-else-if based on an expression that is deterministic
at the time the design is synthesized.
generate case : selecting case expression must be deterministic
at the time the design is synthesized.

genvar exists only in
the specification - not

in the final circuit.

Keywords that denotes
synthesis-time operations

For-loop creates
instances of assignments

Spring 2010 EECS150 - Lec06-CAD1 Page

EECS150 Design Methodology

HDL
Specification

Hierarchically define
structure and/or
behavior of circuit.

Simulation

Functional verification.

Synthesis

Maps specification to
resources of implementation

platform (FPGA for us).

9

Note: This in not the entire story. Other tools are often used
analyze HDL specifications and synthesis results. More on this later.

Spring 2010 EECS150 - Lec06-CAD1 Page

Logic Synthesis

• Verilog and VHDL started out as simulation languages, but
quickly people wrote programs to automatically convert Verilog
code into low-level circuit descriptions (netlists).

• Synthesis converts Verilog (or other HDL) descriptions to
implementation technology specific primitives:
– For FPGAs: LUTs, flip-flops, and RAM blocks

– For ASICs: standard cell gate and flip-flop libraries, and memory blocks.

10

Spring 2010 EECS150 - Lec06-CAD1 Page

Why Logic Synthesis?
1. Automatically manages many details of the design process:

⇒ Fewer bugs
⇒ Improved productivity

2. Abstracts the design data (HDL description) from any
particular implementation technology.
– Designs can be re-synthesized targeting different chip technologies. Ex:

first implement in FPGA then later in ASIC.

3. In some cases, leads to a more optimal design than could be
achieved by manual means (ex: logic optimization)

Why Not Logic Synthesis?
1. May lead to non-optimal designs in some cases.

11

Spring 2010 EECS150 - Lec05-Verilog Page

Main Logic Synthesis Steps

12

Parsing and
Syntax Check

Design
Elaboration

Inference
and Library
Substitution

Logic
Expansion

Logic
Optimization

Partition,
Place & Route

Load in HDL file, run macro preprocessor for
`define, `include, etc..

Compute parameter expressions, process
generates, create instances, connect ports.

Recognize and insert special blocks (memory,
flip-flops, arithmetic structures, ...)

Expand combinational logic to primitive
Boolean representation.

Apply Boolean algebra and heuristics to
simplify and optimize under constraints.

CL to LUTs, map memory and state elements to
chip, assign physical locations, route connections.

foo.v

foo.ncd

Spring 2010 EECS150 - Lec06-CAD1 Page

Operators and Synthesis
• Logical operators map into primitive

logic gates
• Arithmetic operators map into adders,

subtractors, …
– Unsigned 2s complement
– Model carry: target is one-bit wider

that source
– Watch out for *, %, and /

• Relational operators generate
comparators

• Shifts by constant amount are just
wire connections

– No logic involved
• Variable shift amounts a whole

different story --- shifter
• Conditional expression generates logic

or MUX
13

Y = ~X << 2

X[3]

Y[0]

Y[1]

Y[2]X[0]

X[1]

X[2]

Y[3]

Y[4]

Y[5]

Spring 2010 EECS150 - Lec06-CAD1 Page

Simple Example

module foo (A, B, s0, s1, F);
 input [3:0] A;
 input [3:0] B;
 input s0,s1;
 output [3:0] F;
 reg F;
 always @ (*)
 if (!s0 && s1 || s0) F=A; else F=B;
endmodule

Should expand if-else into 4-bit wide multiplexor and optimize the control
logic and ultimately to a single LUT on an FPGA:

14

A

B
F

Spring 2010 EECS150 - Lec06-CAD1 Page

More about Always blocks

15

Spring 2010 EECS150 - Lec06-CAD1 Page

Combinational logic always blocks
Make sure all signals assigned in a combinational always
block are explicitly assigned values every time that the
always block executes. Otherwise latches will be
generated to hold the last value for the signals not
assigned values.

module mux4to1 (out, a, b, c, d, sel);
output out;
input a, b, c, d;
input [1:0] sel;
reg out;
always @(sel or a or b or c or d)
begin
 case (sel)
 2'd0: out = a;
 2'd1: out = b;
 2'd3: out = d;
 endcase
end
endmodule

Sel case value 2’d2 omitted.

Out is not updated when select
line has 2’d2.

Latch is added by tool to hold
the last value of out under this
condition.

Similar problem with if-else
statements.

16

Spring 2010 EECS150 - Lec06-CAD1 Page

To avoid synthesizing a latch in this case, add the missing
select line:

 2'd2: out = c;

Or, in general, use the “default” case:
 default: out = foo;

If you don’t care about the assignment in a case (for instance
you know that it will never come up) then you can assign the
value “x” to the variable. Example:

 default: out = 1‘bx;

 The x is treated as a “don’t care” for synthesis and will
simplify the logic.

 Be careful when assigning x (don’t care). If this case were
to come up, then the synthesized circuit and simulation may
differ.

Combinational logic always blocks

17

Spring 2010 EECS150 - Lec06-CAD1 Page

module and_gate (out, in1, in2);
 input in1, in2;

 output out;

 reg out;

 always @(in1) begin
 out = in1 & in2;

 end

endmodule

Incomplete Triggers
Leaving out an input trigger usually results in
latch generation for the missing trigger.

18

Easy way to avoid incomplete triggers for combinational logic
is with: always @*

in2 not in always sensitivity list.

A latched version of in2 is
synthesized and used as input to
the and-gate, so that the and-gate
output is not always sensitive to in2.

Spring 2010 EECS150 - Lec06-CAD1 Page

Procedural Assignments

• Blocking procedural assignment “=“
– In simulation the RHS is executed and the assignment is completed before the

next statement is executed. Example:

 Assume A holds the value 1 … A=2; B=A; A is left with 2, B with 2.

• Non-blocking procedural assignment “<=“

– In simulation the RHS is executed and all assignment take place at the same
time (end of the current time step - not clock cycle). Example:

 Assume A holds the value 1 … A<=2; B<=A; A is left with 2, B with 1.

19

Verilog has two types of assignments within always blocks:

• In synthesis the difference shows up primarily when inferring state
elements:

always @ (posedge clk) begin always @ (posedge clk) begin

 a = in; b = a; a <= in; b<= a;
end end

b stores in b stores the old a

Spring 2010 EECS150 - Lec06-CAD1 Page

Procedural Assignments
The sequential semantics of the blocking assignment allows
variables to be multiply assigned within a single always block.
Unexpected behavior can result from mixing these
assignments in a single block. Standard rules:

i. Use blocking assignments to model combinational logic
within an always block (“=”).

ii. Use non-blocking assignments to implement sequential logic
(“<=”).

iii. Do not mix blocking and non-blocking assignments in the
same always block.

iv. Do not make assignments to the same variable from more
than one always block.

20

Spring 2010 EECS150 - Lec06-CAD1 Page

FSM CL block rewritten

21

always @(state or in)
 case (state)
 IDLE : begin
 out = 1’b0;
 if (in == 1’b1) next_state = S0;
 else next_state = IDLE;
 end
 S0 : begin
 out = 1’b0;
 if (in == 1’b1) next_state = S1;
 else next_state = IDLE;
 end
 S1 : begin
 out = 1’b1;
 if (in == 1’b1) next_state = S1;
 else next_state = IDLE;

 end
 default: begin
 next_state = IDLE;
 out = 1’b0;
 end
 endcase
endmodule

always @*
 begin
 next_state = IDLE;
 out = 1’b0;
 case (state)
 IDLE : if (in == 1’b1) next_state = S0;
 S0 : if (in == 1’b1) next_state = S1;
 S1 : begin
 out = 1’b1;
 if (in == 1’b1) next_state = S1;
 end
 default: ;
 endcase
 end
endmodule






















* for sensitivity list

Normal values: used
unless specified below.

Within case only need to
specify exceptions to the

normal values.

Note: The use of “blocking assignments” allow signal
values to be “rewritten”, simplifying the specification.

Spring 2010 EECS150 - Lec06-CAD1 Page

Encoder Example
Nested IF-ELSE might lead to “priority logic”
Example: 4-to-2 encoder
always @(x)
begin : encode
if (x == 4'b0001) y = 2'b00;
else if (x == 4'b0010) y = 2'b01;
else if (x == 4'b0100) y = 2'b10;
else if (x == 4'b1000) y = 2'b11;
else y = 2'bxx;
end

This style of cascaded logic
may adversely affect the
performance of the circuit.

22

Spring 2010 EECS150 - Lec06-CAD1 Page

Encoder Example (cont.)

To avoid “priority logic” use the case construct:

always @(x)
begin : encode
case (x)
4’b0001: y = 2'b00;
4’b0010: y = 2'b01;
4'b0100: y = 2'b10;
4'b1000: y = 2'b11;
default: y = 2'bxx;
endcase
end

23

All cases are matched in parallel.

Spring 2010 EECS150 - Lec06-CAD1 Page

Encoder Example (cont.)

A similar simplification would be applied to the if-else version also.

24

This circuit would be simplified during synthesis to take
advantage of constant values as follows and other Boolean
equalities:

Spring 2010 EECS150 - Lec06-CAD1 Page

Encoder Example (cont.)
If you can guarantee that only one 1 appears in the input,
then simpler logic can be generated:

always @(x)
begin : encode
if (x[0]) y = 2'b00;
else if (x[1]) y = 2'b01;
else if (x[2]) y = 2'b10;
else if (x[3]) y = 2'b11;
else y = 2'bxx;
end

25

If the input applied has more than one 1, then this version
functions as a “priority encoder”. The least significant 1 gets
priority (the more significant 1’s are ignored). Again the
circuit will be simplified when possible.

Spring 2010 EECS150 - Lec06-CAD1 Page

Verilog in EECS150
• We use behavior modeling along with instantiation to 1) build

hierarchy and, 2) map to FPGA resources not supported by synthesis.

• Primary Style Guidelines:
– Favor continuous assign and avoid always blocks unless:

• no other alternative: ex: state elements, case

• they help clarity of code & possibly circuit efficiency : ex: case vs, large
nested if else

– Use named ports.

– Separate CL logic specification from state elements.

– Follow our rules for procedural assignments.

• Verilog is a big language. This is only an introduction.
– Our text book is a good source. Read and use chapter 4.

– Be careful of what you read on the web. Many bad examples out there.

– We will be introducing more useful constructs throughout the semester.
Stay tuned!

26

Spring 2010 EECS150 - Lec06-CAD1 Page

Final thoughts on Verilog Examples
Verilog may look like C, but it describes hardware! (Except in
simulation “test-benches” - which actually behave like programs.)

Multiple physical elements with parallel activities and temporal relationships.

A large part of digital design is knowing how to write Verilog that
gets you the desired circuit. First understand the circuit you
want then figure out how to code it in Verilog. If you do one of
these activities without the other, you will struggle. These two
activities will merge at some point for you.

Be suspicious of the synthesis tools! Check the output of the
tools to make sure you get what you want.

27

