
Spring 2010 EECS150 lec02-SDS-review1 Page

EECS150 - Digital Design
Lecture 2 - Synchronous Digital

Systems Review Part 1
January 21, 2010

John Wawrzynek
Electrical Engineering and Computer Sciences

University of California, Berkeley

http://www-inst.eecs.berkeley.edu/~cs150

1

Spring 2010 EECS150 lec02-SDS-review1 Page

Outline

• Topics in the review, you have already seen in CS61C,
and possibly EE40:
1. Digital Signals.

2. General model for synchronous systems.

3. Combinational logic circuits
4. Flip-flops, clocking (Next week)

2

Spring 2010 EECS150 lec02-SDS-review1 Page

Integrated Circuit Example
• PowerPC microprocessor micro-

photograph
– Superscalar (3 instructions/cycle)
– 6 execution units (2 integer and 1 double

precision IEEE floating point)
– 32 KByte Instruction and Data L1 caches
– Dual Memory Management Units (MMU)
– External L2 Cache interface with

integrated controller and cache tags.

Comprises only transistors and wires.

Connections to outside world (ex.
motherboard)

• Memory interface
• Power (Vdd, GND)
• Clock input

3

Spring 2010 EECS150 lec02-SDS-review1 Page

Clock Signal

A source of regularly occurring pulses used to measure the passage of
time.

• Waveform diagram shows evolution of signal value (in voltage) over time.

• Usually comes from an off-chip crystal-controlled oscillator.

• One main clock per chip/system.
• Distributed throughout the chip/system.

• “Heartbeat” of the system. Controls the rate of computation by directly
controlling all data transfers.

Τ represents
the time of one
clock “cycle”.

4

Spring 2010 EECS150 lec02-SDS-review1 Page

Data Signals

The facts:
1. Low-voltage represents binary 0 and high-voltage, binary 1.

2. Circuits are design and built to be “restoring”. Deviations from ideal voltages
are ignored. Outputs close to ideal.

3. In synchronous systems, all changes follow clock edges.

Random adder circuit at a random
point in time:

Observations:
1. Most of the time, signals are in

either low- or high-voltage position.
2. When the signals are at the high-

or low-voltage positions, they are
not all the way to the voltage
extremes (or they are past).

3. Changes in the signals correspond
to changes in clock signal (but don’t
change every cycle).

5

Spring 2010 EECS150 lec02-SDS-review1 Page

Circuit Delay
Digital circuits cannot produce

outputs instantaneously.

• In general, the delay through a
circuit is called the propagation
delay. It measures the time from
when inputs arrive until the
outputs change.

• The delay amount is a function of
many things. Some out of the
control of the circuit designer:
– Processing technology, the

particular input values.

• And others under her control:
– Circuit structure, physical layout

parameters.

6

Spring 2010 EECS150 lec02-SDS-review1 Page

Bus Signals
Signal wires grouped together

often called a bus.

• X0 is called the least
significant bit (LSB)

• X3 is called the most
significant bit (MSB)

• Capital X represents the
entire bus.
– Here, hexadecimal digits

are used to represent the
values of all four wires.

– The waveform for the bus
depicts it as being
simultaneiously high and
low. (The hex digits give the
bit values). The waveform
just shows the timing.

7

Spring 2010 EECS150 lec02-SDS-review1 Page

Combinational Logic Blocks

• Example four-input function:

• True-table representation of function.
Output is explicitly specified for each
input combination.

• In general, CL blocks have more than
one output signal, in which case, the
truth-table will have multiple output
columns.

a b c d y
0 0 0 0 F(0,0,0,0)
0 0 0 1 F(0,0,0,1)
0 0 1 0 F(0,0,1,0)
0 0 1 1 F(0,0,1,1)
0 1 0 0 F(0,1,0,0)
0 1 0 1 F(0,1,0,1)
0 1 1 0 F(0,1,1,0)
1 1 1 1 F(0,1,1,1)
1 0 0 0 F(1,0,0,0)
1 0 0 1 F(1,0,0,1)
1 0 1 0 F(1,0,1,0)
1 0 1 1 F(1,0,1,1)
1 1 0 0 F(1,1,0,0)
1 1 0 1 F(1,1,0,1)
1 1 1 0 F(1,1,1,0)
1 1 1 1 F(1,1,1,1)

8

Spring 2010 EECS150 lec02-SDS-review1 Page

Example CL Block
• 2-bit adder. Takes two 2-bit

integers and produces 3-bit result.

• Think about true table for 32-bit
adder. It’s possible to write out,
but it might take a while!

a1 a0 b1 b0 c2 c1 c0
0 0 0 0 0 0 0

0 0 0 1 0 0 1

0 0 1 0 0 1 0

0 0 1 1 0 1 1

0 1 0 0 0 0 1

0 1 0 1 0 1 0

0 1 1 0 0 1 1

0 1 1 1 1 0 0

1 0 0 0 0 1 0

1 0 0 1 0 1 1

1 0 1 0 1 0 0

1 0 1 1 1 0 1

1 1 0 0 0 1 1

1 1 0 1 1 0 0

1 1 1 0 1 0 1

1 1 1 1 1 1 0

9

Theorem: Any combinational logic function can
be implemented as a networks of logic gates.

Spring 2010 EECS150 lec02-SDS-review1 Page

Logic “Gates”

ab c
00 0
01 0
10 0
11 1

AND ab c
00 0
01 1
10 1
11 1

OR NOT a b
0 1
1 0

ab c
00 1
01 1
10 1
11 0

NAND ab c
00 1
01 0
10 0
11 0

NOR ab c
00 0
01 1
10 1
11 0

XOR

• Logic gates are often the primitive elements out of which combinational logic circuits
are constructed.

– In some technologies, there is a one-to-one correspondence between logic gate
representations and actual circuits.

– Other times, we use them just as another abstraction layer (FPGAs have no real logic
gates).

• How about these gates with more than 2 inputs?
• Do we need all these types?

10

Spring 2010 EECS150 lec02-SDS-review1 Page

Example Logic Circuit

11

• How do we know that these two representations are equivalent?

a b c y
0 0 0 0
0 0 1 0
0 1 0 0
0 1 1 1
1 0 0 0
1 0 1 1
1 1 0 1
1 1 1 1

Spring 2010 EECS150 lec02-SDS-review1 Page

Logic Gate Implementation
• Logic circuits have been built out of many different

technologies. As we know, as long as we have a basic logic
gate (AND or OR) and inversion we can build any a complete
logic family.

12

CMOS Gate

DTL

Hydraulic
Mechanical LEGO logic gates.
A clockwise rotation represents
a binary “one” while a counter-
clockwise rotation represents a
binary “zero.”

Spring 2010 EECS150 lec02-SDS-review1 Page

Restoration

• An necessary property of any successful technology for logic
circuits is "Restoration".

• Circuits need:
– to ignore noise and other non-idealities at the their inputs, and

– generate "cleaned-up" signals at their output.

• Otherwise, each stage would propagates input noise to their
output and eventually noise and other non-idealities would
accumulate and signal content would be lost.

13

Spring 2010 EECS150 lec02-SDS-review1 Page

Inverter Example of Restoration

• Inverter acts like a “non-linear” amplifier

• The non-linearity is critical to restoration

• Other logic gates act similarly with respect to input/output
relationship.

14

Example (look at 1-input gate, to keep it simple):

Idealize Inverter Actual Inverter

Spring 2010 EECS150 lec02-SDS-review1 Page

Abstract View of MIPS Implementation

15

Data
Out

clk

5

Rw Ra Rb

Register
File

Rd

Data
In

Data
Addr Data

Memory

Instruction

Instruction
Address

Instruction
Memory

PC

5
Rs

5
Rt

32

323232
A

B

N
ex

t A
dd

re
ss

Control

Datapath

Control Signals Conditions

clk clk

A
LU

How do we implement these various pieces?

Spring 2010 EECS150 lec02-SDS-review1 Page

MIPS ALU Functions

• Responsible for the action taken by most of the R-type
instructions: add, sub, and, or, ...

• Arithmetic operations are complex. We’ll study those later
(although in 61c you saw a simple “ripple adder/subtractor”)

• “Bitwise logical” instructions (and, or, ...) take values from 2
registers and combine them according to some logic
operation.

• Example: and $r3, $r2, $r1
• Implementation within the ALU:

• Likewise for or, exor, ...

16

Spring 2010 EECS150 lec02-SDS-review1 Page

MIPS Implemenation

• Consider beq instruction:

 beq $2,$1,loop

• How does the processor check to see if the two register values
are equal?

• One approach (used in 61c) is to subtract the two values and
check the result for zero (all bits of the result are 0).

• Okay, so how does the processor check the result for zero?

• What if the we can’t use the subtractor to compare the two
register values. Is it possible to compare them directly?

17

Spring 2010 EECS150 lec02-SDS-review1 Page

61c MIPS, a Combinational Logic Block

18

ALUctrRegDst ALUSrcExtOp MemtoRegMemWr

Instruction<31:0>

<21:25>

<16:20>

<11:15>

<0:15>

Imm16RdRsRt

nPC_sel

Adr

Inst
Memory

DATA PATH

Control

Op

<0:5>

Func

RegWr

<26:31>

Note: Only Op and
Func are used.

Spring 2010 EECS150 lec02-SDS-review1 Page

MIPS Controller Implementation

• The controller examines the instruction as it comes from the
instruction memory (or cache), “decodes” it, and asserts the
proper “control signals” to be used by the rest of the processor
for instruction execution.

• Instruction decoding is the process of identifying the instruction
type and operation code.

• Then based on the instruction operation code, the proper
control signals can be asserted.

19

Spring 2010 EECS150 lec02-SDS-review1 Page

61C MIPS Controller Summary

20

add sub ori lw sw beq j
RegDst
ALUSrc
MemtoReg
RegWrite
MemWrite
nPCsel
Jump
ExtOp
ALUctr<1:0>

1
0
0
1
0
0
0
x

Add

1
0
0
1
0
0
0
x

Subtract

0
1
0
1
0
0
0
0

Or

0
1
1
1
0
0
0
1

Add

x
1
x
0
1
0
0
1

Add

x
0
x
0
0
1
0
x

Subtract

x
x
x
0
0
0
1
x

xxx

op target address

op rs rt rd shamt funct
061116212631

op rs rt immediate

R-type

I-type

J-type

add, sub

ori, lw, sw, beq

jump

func
op 00 0000 00 0000 00 1101 10 0011 10 1011 00 0100 00 0010

10 0000 10 0010 We Don’t Care :-)

Spring 2010 EECS150 lec02-SDS-review1 Page

Instruction Decoding

• Jump instruction. Op = 000010

• Branch if equal instruction. Op = 000100

• Store word instruction. Op = 101011

• The instruction decode would assert a special signal for each of
these instructions:

21

Spring 2010 EECS150 lec02-SDS-review1 Page

General Model for Synchronous Systems

• All synchronous digital systems fit this model:
– Collections of combinational logic blocks and state elements connected by

signal wires. These form a directed graph with only two types of nodes
(although the graph need not be bi-partite.)

– Instead of simple registers, sometimes the state elements are large memory
blocks.

22

Spring 2010 EECS150 lec02-SDS-review1 Page

Extras

23

Spring 2010 EECS150 lec02-SDS-review1 Page

Noise Margins

24

NMH = VOH – VIH

NML = VIL – VOL

Spring 2010 EECS150 lec02-SDS-review1 Page

D.C. Transfer Characteristics

25

Ideal Buffer: Real Buffer:

NMH = NML = VDD/2 NMH , NML < VDD/2

Spring 2010 EECS150 lec02-SDS-review1 Page

D.C. Transfer Characteristics

26

Spring 2010 EECS150 lec02-SDS-review1 Page

VDD Scaling

27

• Chips in the 1970’s and 1980’s were designed
using VDD = 5 V

• As technology improved, VDD dropped
– Avoid frying tiny transistors
– Save power

• 3.3 V, 2.5 V, 1.8 V, 1.5 V, 1.2 V, 1.0 V, …
• Be careful connecting chips with different

supply voltages
Chips operate because they contain magic smoke
Proof:

– if the magic smoke is let out, the chip stops working

