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Outline

• Topics in the review, you have already seen in CS61C, 
and possibly EE40:
1. Digital Signals.

2. General model for synchronous systems.

3. Combinational logic circuits 
4. Flip-flops, clocking (Next week)
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Integrated Circuit Example
• PowerPC microprocessor micro-

photograph
– Superscalar (3 instructions/cycle)
– 6 execution units (2 integer and 1 double 

precision IEEE floating point)
– 32 KByte Instruction and Data L1 caches
– Dual Memory Management Units (MMU)
– External L2 Cache interface with 

integrated controller and cache tags.

Comprises only transistors and wires.

Connections to outside world (ex. 
motherboard)

• Memory interface
• Power (Vdd, GND)
• Clock input
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Clock Signal

A source of regularly occurring pulses used to measure the passage of 
time.

• Waveform diagram shows evolution of signal value (in voltage) over time.

• Usually comes from an off-chip crystal-controlled oscillator. 

• One main clock per chip/system. 
• Distributed throughout the chip/system.

• “Heartbeat” of the system.  Controls the rate of computation by directly 
controlling all data transfers.

Τ represents 
the time of one 
clock “cycle”.
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Data Signals

The facts:
1. Low-voltage represents binary 0 and high-voltage, binary 1.

2. Circuits are design and built to be “restoring”.  Deviations from ideal voltages 
are ignored.  Outputs close to ideal.

3. In synchronous systems, all changes follow clock edges.

Random adder circuit at a random 
point in time:

Observations:
1. Most of the time, signals are in 

either low- or high-voltage position.
2. When the signals are at the high- 

or low-voltage positions, they are 
not all the way to the voltage 
extremes (or they are past).

3. Changes in the signals correspond 
to changes in clock signal (but don’t 
change every cycle).
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Circuit Delay
Digital circuits cannot produce 

outputs instantaneously.

• In general, the delay through a 
circuit is called the propagation 
delay.  It measures the time from 
when inputs arrive until the 
outputs change.

• The delay amount is a function of 
many things.  Some out of the 
control of the circuit designer:
– Processing technology, the 

particular input values.

• And others under her control:
– Circuit structure, physical layout 

parameters.
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Bus Signals
Signal wires grouped together 

often called a bus.

• X0 is called the least 
significant bit (LSB)

• X3 is called the most 
significant bit (MSB)

• Capital X represents the 
entire bus.
– Here, hexadecimal digits 

are used to represent the 
values of all four wires.

– The waveform for the bus 
depicts it as being 
simultaneiously high and 
low. (The hex digits give the 
bit values).  The waveform 
just shows the timing.
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Combinational Logic Blocks

• Example four-input function:

• True-table representation of function.  
Output is explicitly specified for each 
input combination.

• In general, CL blocks have more than 
one output signal, in which case, the 
truth-table will have multiple output 
columns.

a b c d         y
0 0 0 0  F(0,0,0,0)
0 0 0 1  F(0,0,0,1)
0 0 1 0  F(0,0,1,0)
0 0 1 1  F(0,0,1,1)
0 1 0 0  F(0,1,0,0)
0 1 0 1  F(0,1,0,1)
0 1 1 0  F(0,1,1,0)
1 1 1 1  F(0,1,1,1)
1 0 0 0  F(1,0,0,0)
1 0 0 1  F(1,0,0,1)
1 0 1 0  F(1,0,1,0)
1 0 1 1  F(1,0,1,1)
1 1 0 0  F(1,1,0,0)
1 1 0 1  F(1,1,0,1)
1 1 1 0  F(1,1,1,0)
1 1 1 1  F(1,1,1,1)
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Example CL Block
• 2-bit adder.  Takes two 2-bit 

integers and produces 3-bit result.

• Think about true table for 32-bit 
adder.  It’s possible to write out, 
but it might take a while!

a1 a0 b1 b0 c2 c1 c0
0 0 0 0 0 0 0

0 0 0 1 0 0 1

0 0 1 0 0 1 0

0 0 1 1 0 1 1

0 1 0 0 0 0 1

0 1 0 1 0 1 0

0 1 1 0 0 1 1

0 1 1 1 1 0 0

1 0 0 0 0 1 0

1 0 0 1 0 1 1

1 0 1 0 1 0 0

1 0 1 1 1 0 1

1 1 0 0 0 1 1

1 1 0 1 1 0 0

1 1 1 0 1 0 1

1 1 1 1 1 1 0
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Theorem:  Any combinational logic function can 
be implemented as a networks of logic gates. 
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Logic “Gates”

ab  c
00  0
01  0
10  0
11  1

AND ab  c
00  0
01  1
10  1
11  1

OR NOT a  b
0  1
1  0

ab  c
00  1
01  1
10  1
11  0

NAND ab  c
00  1
01  0
10  0
11  0

NOR ab  c
00  0
01  1
10  1
11  0

XOR

• Logic gates are often the primitive elements out of which combinational logic circuits 
are constructed. 

– In some technologies, there is a one-to-one correspondence between logic gate 
representations and actual circuits.

– Other times, we use them just as another abstraction layer (FPGAs have no real logic 
gates).

• How about these gates with more than 2 inputs?
• Do we need all these types?
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Example Logic Circuit
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• How do we know that these two representations are equivalent?

a b c   y
0 0 0   0
0 0 1   0
0 1 0   0
0 1 1   1
1 0 0   0
1 0 1   1
1 1 0   1
1 1 1   1
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Logic Gate Implementation
• Logic circuits have been built out of many different 

technologies.  As we know, as long as we have a basic logic 
gate (AND or OR) and inversion we can build any a complete 
logic family.  
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CMOS Gate

DTL

Hydraulic 
Mechanical LEGO logic gates. 
A clockwise rotation represents 
a binary “one” while a counter-
clockwise rotation represents a 
binary “zero.”
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Restoration

• An necessary property of any successful technology for logic 
circuits is "Restoration".

• Circuits need:
– to ignore noise and other non-idealities at the their inputs, and

– generate "cleaned-up" signals at their output.

• Otherwise, each stage would propagates input noise to their 
output and eventually noise and other non-idealities would 
accumulate and signal content would be lost.

13

Spring 2010 EECS150 lec02-SDS-review1 Page 

Inverter Example of Restoration

• Inverter acts like a “non-linear” amplifier

• The non-linearity is critical to restoration

• Other logic gates act similarly with respect to input/output 
relationship.
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Example (look at 1-input gate, to keep it simple):

Idealize Inverter Actual Inverter
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Abstract View of MIPS Implementation
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How do we implement these various pieces?
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MIPS ALU Functions

• Responsible for the action taken by most of the R-type 
instructions: add, sub, and, or, ...

• Arithmetic operations are complex.  We’ll study those later 
(although in 61c you saw a simple “ripple adder/subtractor”)

• “Bitwise logical” instructions (and, or, ...) take values from 2 
registers and combine them according to some logic 
operation.

• Example:                and  $r3, $r2, $r1
• Implementation within the ALU:

• Likewise for or, exor, ...
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MIPS Implemenation

• Consider  beq  instruction:

                beq  $2,$1,loop

•  How does the processor check to see if the two register values 
are equal?

• One approach (used in 61c) is to subtract the two values and 
check the result for zero (all bits of the result are 0).

• Okay, so how does the processor check the result for zero?

• What if the we can’t use the subtractor to compare the two 
register values.  Is it possible to compare them directly?
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61c MIPS, a Combinational Logic Block
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MIPS Controller Implementation

• The controller examines the instruction as it comes from the 
instruction memory (or cache), “decodes” it, and asserts the 
proper “control signals” to be used by the rest of the processor 
for instruction execution.

• Instruction decoding is the process of identifying the instruction 
type and operation code.

• Then based on the instruction operation code, the proper 
control signals can be asserted. 
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61C MIPS Controller Summary
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op target address
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061116212631

op rs rt immediate
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func
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10 0000 10 0010 We Don’t Care :-)
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Instruction Decoding

• Jump instruction.  Op = 000010

• Branch if equal instruction.  Op = 000100

• Store word instruction.  Op = 101011

• The instruction decode would assert a special signal for each of 
these instructions:
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General Model for Synchronous Systems

• All synchronous digital systems fit this model:
– Collections of combinational logic blocks and state elements connected by 

signal wires.  These form a directed graph with only two types of nodes 
(although the graph need not be bi-partite.)

– Instead of simple registers, sometimes the state elements are large memory 
blocks.
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Extras
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Noise Margins
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NMH = VOH – VIH

NML =  VIL  – VOL
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D.C. Transfer Characteristics
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Ideal Buffer:                         Real Buffer:

NMH = NML = VDD/2 NMH , NML < VDD/2
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D.C. Transfer Characteristics
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VDD Scaling
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• Chips in the 1970’s and 1980’s were designed 
using VDD = 5 V

• As technology improved, VDD dropped
– Avoid frying tiny transistors
– Save power

• 3.3 V, 2.5 V, 1.8 V, 1.5 V, 1.2 V, 1.0 V, …
• Be careful connecting chips with different 

supply voltages
Chips operate because they contain magic smoke
Proof: 

– if the magic smoke is let out, the chip stops working


