EECS150: Lab 2, Mapping Circuit Elements to FPGAs

UC Berkeley College of Engineering
Department of Electrical Engineering and Computer Science

1 Time Table

ASSIGNED | Thursday, January 287"
DUE Week 4: February 9" — 11%" at beginning of your assigned lab section

2 Objectives

In this lab, you will be working with Verilog HDL (hardware description language) to architect a practical
circuit. After designing your circuit, you will debug and verify it using a hardware-based test harness.
Finally, after your circuit is working correctly, you will conduct a resource and timing analysis that will
show you exactly how your design was actually implemented on the FPGA.

Through conducting these tests, you will gain experience working with non-trivial circuits on real
hardware. Additionally, you will learn about design partitioning, the process where primitive gates and
flip-flops in an HDL, like Verilog, are mapped down to primitive elements on the FPGA. Lastly, you
will learn how to use hardware-based test harnesses, along with various tools, to help you debug your
designs.

3 Addendum to the CAD Flow

In the FPGA Editor lab, you learned how a file! that contains a circuit description, mapped to a specific
FPGA, can be modified and used to configure actual hardware. In this lab, we will be exploring an
extension to this CAD flow that, in the end, generates the circuit description file. As in last lab, we will
use the .ncd to generate a .bit file which we will then use to verify our design in hardware.

Figure 1 shows the additions to the tool flow that we will be using in this lab. The parts of the flow in
the gray box were explored in the FPGA Editor lab. In this exercise, you will be introduced to Design
Entry (Section 3.1), Design Partitioning (Section 3.2) and Translate/Map/PAR (Section 3.3).
Collectively, Design Partitioning and PAR are known as Partition-Place-and-Route or PPR. It is in
these steps that you will be performing a majority of your analysis.

3.1 Design Entry

The first step in logic design is to conceptualize your design. Once you have a good idea about the function
and structure of your circuit and maybe a few block diagram sketches, you can start the implementation
process by specifying your circuit in a more formal manner.

In this class we will use a Hardware Description Language (HDL) called Verilog. HDLs have several
advantages over other methods of circuit specification:

1. Ease of editing, since files can be written using any text editor

1Specifically, we are referring to the .ncd file that FPGA Editor works with.

Figure 1 Structural Verilog — .bit file tool flow.

Design Entry Design Partitioning Translate/Map/PAR BitGen iMPACT
R 010110001) uai
E | R .| 001001101 bit '
= R > 000101010 i
= 100100101 1oy
Verilog HDL Synplify Pro N
AN s
ned N .ncd (optionally modified)

— — — —» Optional step

N\

Previous Lab (FPGA Editor)

2. Ease of management when dealing with large designs

3. The ability to use a high-level behavioral description of a circuit.

In this class we will default to using basic text editors to write Verilog. Fancier editors are available,
and in fact are included with the CAD tools such as Xilinx ISE and ModelSim; however these tools are
slow and will often hinder you.

In this lab, you will only be using a small subset of Verilog called Structural Verilog.
Specifically, you will be designing down to primitive gates (such as and and or) and flip-flops.

3.2 Design Partitioning

Design partitioning is the process of transforming the primitive gates and flip-flops that you wrote in
Verilog into LUTs and other primitive FPGA elements. For example, if you described a circuit composed
of many gates, but ultimately of 6 inputs and 1 output, Design Partitioning will map your circuit down
to a single 6LUT. Likewise, if you described a flip-flop, it will be mapped to a specific type of flip-flop
which actually exists on the FPGA. The final product of the design partitioning phase is a netlist file, a
text file that contains a list of all the instances of primitive components in the translated circuit and a
description of how they are connected.

3.3 Translate, Map, Place and Route

From the netlist produced by the design partitioning tools, we must somehow create a file that can be
directly translated into a bitstream to configure the FPGA. This is the job of the Translate, Map, and
the Place and Route (PAR) tools.

3.3.1 Translate

Translate takes as input a netlist file from the design partitioning tools and outputs a Xilinx database file,
which is the same thing as the netlist, reduced to logic elements expressed in terms that Xilinx-specific
devices can understand.

3.3.2 Map

Map takes as input the database file which was output from Translate and ‘maps’ it to a specific Xilinx
FPGA. This is necessary because different FPGAs have different architectures, resources, and compo-
nents.

3.3.3 Placement

Placement takes as input the result of the “Map” step and determines exactly where, physically, on the
FPGA each LUT, flip-flop, and logic gate should be placed. For example, a 6LUT implementing the
function of a 6-input NAND gate in a netlist could be placed in any of the 69,120 6LUTs in a Xilinx
Virtex5 xchbvlx110t FPGA chip. Clever choice of placement will make the subsequent routing easier and
result a circuit with less delay.

3.3.4 Routing

Once the components are placed, the proper connections must be made. This step is called routing,
because the tools must choose, for each signal, one of the millions of paths to get that signal from its
source to its destination.

Because the number of possible paths for a given signal is very large, and there are many signals, this
is typically the most time consuming part of implementing a design, aside from specification. Planning
your design well and making it compact and efficient will significantly reduce how long this step takes.
Designing your circuit well can cut the time it takes to route from 30 min to 30 sec.

3.3.5 PPR: Partitioning vs. Place and Route

Unlike design partitioning, which only needs to know a set of primitive components to express its result,
placement and routing are dependent upon the specific size and structure of the target FPGA. Because
of this the FPGA vendor, Xilinx in our case, usually provides the placement and routing programs,
whereas a third party, Synplicity, can often provide more powerful and more general design partitioning
tools.

3.4 After PAR: Design Tuning and Device Configuration

The output of the PAR tools is the .ncd file that contains the fully placed and routed design mapped
down to specific LUTs and interconnects. At this point, you can run BitGen to produce a .bit file
directly, or modify the design further with a program such as FPGA Editor. For explanations on either
of these CAD flow steps, feel free to refer to the appropriate Sections in the FPGA Editor lab.

4 Lab Prerequisites

Before reading any datasheets or writing any Verilog, read the entirety of this section. It contains a
detailed description of the Verilog constructs that you will be allowed to use as well as of the circuit you
will be designing. Additionally, it provides a soft introduction to the Xilinx primitives that your design
will need to instantiate. If you have any questions regarding the material in this section, be sure to ask
a TA ahead of time.

4.1 Allowed Verilog Constructs

In this lab you will be using only Structural Verilog. Specifically, you will be allowed to:
1. Instantiate simple modules.
2. Use the wire construct.

3. Instantiate the primitive gates (using any number of inputs):

http://inst.eecs.berkeley.edu/~cs150/sp10/Lab/Lab1/Lab1.pdf

Additionally, although they are not stricly Structural Verilog constructs, you will be using Verilog
generate and parameter statements.

If any of the constructs mentioned above are unclear or you feel that you need to brush
up on Verilog in general, please refer to your text or to the code examples provided in
the lab (specifically ALU.v and Mux21.v). With regards to using any source to learn Verilog,
remember that you are only allowed to instantiate primitive gates, modules and wires in this lab. In
general, the only allowed syntax for this lab can be found in one or both of ALU.v and
Mux21.v.

4.2 Using Xilinx FPGA Primitives

In addition to writing Structural Verilog, you will also instantiate FPGA Primitives. An FPGA prim-
itive is either an actual piece of hardware on the FPGA or a wrapper that gets transformed into one. For
example, the Virtex5 xchvlx110t FPGA has flip-flops that can be set synchronously or asynchronously.
There are different FPGA primitives, that users can instantiate in their Verilog, for both settings. Both
primitives map to the same flip-flop, however. The difference is that depending on what type of primitive
you choose, the actual element on the FPGA that it gets mapped to will be configured differently. This
is ultimately a convenience, allowing users to select which elements in the FPGA they want to use (and
how those elements are configured) during Design Entry.

In this lab, you will be using the Xilinx FDRSE primitive. Specifically, this is a D flip-flop with some
additional properties of interest. As a later part of the PreLab (see Part 1b), you will read about the
details of this primitive and how to use it in your designs.

4.3 Structural Accumulator

The main part of this lab will be spent building, testing, and analyzing the implementation of an N-bit
Accumulator circuit. Regardless of its width, accumulators follow the basic structure shown in Figure 2.

Figure 2 The general structure of an accumulator

Result

b 4
~

ALUOpT Clock

As shown in Figure 2, the Accumulator has a Clock, a standard data input In and an ALUOp?. In
is a new value from outside the Accumulator which is to be processed by the ALU. ALUOp indicates
the operation (and, xor or + for example) that the ALU will perform. The other input to the ALU is
the output of a register which captures the result of the ALU from the cycle before. Thus, when the
ALUOp is set to addition, the Accumulator ‘accumulates,” hence the name.

We will be implementing our ALU using a bit-slice approach. A bit-sliced ALU is an N-bit ALU
implemented as 1-bit ALUs. Bit-sliced ALUs are very efficiently mapped to FPGAs because each 1-bit
ALU maps to a small number of FPGA resources. Additionally, by implementing your ALU as a chain
of 1-bit ALUs, it will be easy to use Verilog generate statements to parameterize your ALU to N-bits
(where you can choose the N). An example of using generate to build an N-bit ALU is shown pictorially
in Figure 3.

2 Accumulators do not typically have an ALUOp as they typically use a plain Adder circuit. Our Accumulator has an
ALUOp because it uses a full-blown ALU.

http://www.xilinx.com/

Figure 3 Extending a bit-slice ALU out to N-bits using generate
AB

ALUBItSlice

CarryOu(L
Carryln

ALUBItSlice

Al1]

B[1]

h 4

CarryOut

e Result

'Y

) J

N Y R 14
B2 ALUBItSlice
>
Carryoui
[° |o
[4 ° °
°

o |o
_—— =/
‘generate’ block

P e N

ALUOp

As you will soon come to appreciate, the ease of changing the ALU’s bit-width is extremely useful
for performing experiments. Specifically, instead of recoding an ALU of a different width, you can just
change a parameter that sets the width and the generate statement will take care of rebuilding the
circuit automatically.

4.3.1 Coding the Accumulator

You will find a Verilog framework in the /Files directory of this lab. The framework only specifies
the interfaces that you must abide by in order to make your Accumulator behave properly with our
Tester module, which will be provided for you at the start of lab. Feel free to modify any and all
Verilog we give you. The only restriction on this policy is that you cannot modify the port
specifications (interface) of ALU.v or Accumulator.v.

As part of the PreLab (see Part 2a in Section 5), you will have to implement:

1. ALUBiItSlice: A 1-bit ALU.

2. Accumulator: The Accumulator.

You will find the following Verilog written for you (feel free to modify it, but do not modify the port
interface on the ALU):

1. Mux21: A 2:1 multiplexer.
2. ALU: The N-bit ALU.

The N-bit ALU will show you exactly how the ALUBItSlice modules are used (as it instantiates
them) and how to use a Verilog generate statement to parameterize your circuits. You can extend this
concept to the Accumulator, which requires the same support, but is not done for you. Keep in mind,
you must still incorperate the flip-flop FDRSE primitive element in your Accumulator.
This has not been provided and you are expected to become aquanted with the Xilinx
documentation (see PreLab Part 1b) on how to use and instantiate the FDRSE.

Aside from its interface, which is specified by the framework because it is instantiated in ALU,
ALUBItSlice’s implementation is entirely up to you. Take note, however, that part of the ALUBIitSlice’s

interface is exactly what ALUOp encoding it should support (see Table 1). If your ALUBItSlice doesn’t
follow this ALUOp encoding, it will produce different results when run alongside the Tester.

Table 1 ALUOp operation encoding

Binary Code Operation

000 Result = A + B

001 Result = A — B

010 Result = A & B (bit-wise and)
011 Result = A | B (bit-wise or)
100 Result = A "~ B (bit-wise xor)
101 Result = ~A (bit-wise not)
110 Result = A (passthrough)

111 unused

As you probably notice in Table 1, our ALU supports many more functions than a mere 2:1 mux can
choose between. You will have to find a way to join 2:1 muxes together in order to create a mux large
enough to support all of the operations shown in Table 1. Feel free to use Mux21 as a starting point. It
has been provided as an example of what Verilog constructs/syntax you are allowed to use
in the rest of your design.

5 PreLab

Please make sure to complete the prelab before you attend your lab section. This week’s lab will be very
long and frustrating if you do not do the prelab ahead of time.

1. Reading

(a) Read Sections 3 and 4 and ask questions ahead of time if anything is unclear.

e Pay particular attention to Section 4.3 as it will tell you what you have to implement for
PreLab Part 2a specifically.

(b) Read the “FDRSE” section in the Virtex-5 Libraries Guide for HDL Designs.
2. Verilog and Design

(a) Write all the Verilog specified in Section 4.3 ahead of time.

e Since Verilog is nothing more than a bunch of standard text in a file with a *.v extension,
you can complete this part in your favorite text editor (we recommend emacs in Verilog
mode or Notepad++).

e Don’t worry about debugging your Verilog. The first main part of the lab constitutes
debugging your design.

3. Questions: Answer all questions on the Check-off sheet of this lab packet.

6 Lab Procedure

This section, and those beyond, assumes that you have coded the Structural Accumulator.

Before we analyze our circuit, we have to make sure it works correctly. To debug it properly, we will
use several tools. First, we will run Synplify Pro (see Figure 1) to check our Verilog for syntax errors.
Next, we will use the Synplify RTL Schematic to produce a gate and register level diagram of our
circuit. This will allow us to inspect our design for obvious errors which are harder to see in Verilog
code. Finally, we will actually test our circuit on actual hardware against a test harness that is also built
in hardware.

http://inst.eecs.berkeley.edu/~cs150/Documents/virtex5_hdl.pdf

6.1 Circuit Debugging

As our first step, we must resolve trivial typos and remaining bugs in our circuit. To accomplish this,
we must first setup a Xilinx ISE Project to negotiate with the tools properly.

6.1.1 Project Setup
1. Move all of your Verilog files into C:\Users\cs150—xxx\Lab2Verilog®.

2. Unzip and move all of our Verilog files from the /Framework directory of the lab to the same
directory as was listed in the previous step.

3. Double-Click the Xilinx ISE icon on the desktop to start Xilinx ISE
4. Click File — New Project and type in a project name (i.e. Lab2)
(a) Set the project location to C:\Users\cs150-xx (Xilinx ISE will create a subdirectory for the
project).
(b) The Top-Level Module Type should be set to HDL.
(¢) Click Next.

5. A new dialog will appear with configuration settings

) Device Family: Virtex5
) Device: xc5vIx110t
(c) Package: 1136
(d) Speed Grade: -1
) Synthesis Tool: Synplify Pro
) Simulator: ModelSimSE-Verilog
)

Leave the “Enable Enhanced Design Summary,” “Enable Message Filtering,” and “Display
Incremental Messages” checkboxes set to their defaults.

(h) Click Next
6. Skip the Add New Sources dialog by clicking Next.
7. Take a moment to review the project settings. Then click Finish.

8. Right-Click in the Sources In Project box in the upper left corner of Xilinx ISE, and select
Add Source (not Add Copy of Source).

(a) Navigate to the C:\Users\cs150-xxx\Lab2Verilog folder and select all of your Verilog
files, then click Open.

(b) Use shift-click and control-click to select multiple files.
(¢) Click OK.

9. You should now have a Xilinx ISE project, which looks like Figure 4.

Xilinx ISE, as shown in Figure 4, will allow you to manage your files and invoke the various CAD
tools from a central location.

Before continuing, take a moment to orient yourself with the Xilinx ISE IDE. In the upper left is the
“Sources” box, where you can see all the modules that are part of your project, as well as which modules
they depend on (or test) and which files that are in. In the middle left, you can see the “Processes”
box, which will show all of the tools which can be applied to the currently selected source file.

You might have noticed that several Verilog files you had no part in modifying (the Verilog in the
/Framework directory) have appeared in the Sources area. These include FPGA_TOP_ML505 and its
children: several TestHarness modules. FPGA_TOP_ML505 is (by default) the top level Verilog file in

3The directory doesn’t matter; however, we will use this one for the remainder of this tutorial.

Figure 4 A Complete Project

59 Xiling - ISE - CASVN\Sandbox Privatelirunk\Projects\Caling? +\CaliniZ +\Calin2-+se - [Design Summa ;
L File Edit View Project Source Process Window Help &
DPEAL dREXImaRiPAKALRIE BEOD SN N Em LEFA S8=32%A% 0 0D
£ FPGA Design Summary B Calinc2+ Project Status
I ‘Z“gg'ﬂ z|e D“E 2”5""3‘” Project File: Calruc2 e Current State: New
RET ummery
c PGARspostory \Proj : 03 10B Properties Modie Name: FRGA.TOR2 * Emore:
= £ xcv2000e Hg580 [0 Moduie Level Uiization Target Device: wev2000e-ig680 + Warings:
13 Timing Conirants Product Version: 1SE 101 - Foundstion Smuator + Routing Results-
- [Finout Report Design Goal: Balanced + Timing Constraints:
Labi1Ciout - LabCirouit (C:/SYN/Sandbene/BerkeleyFPGARepos | [lock Report 2| ['Design Sratear: i O rlocked) « Final Tuming Scare:
DD1 - Bin2HexLED (C:/SVN/ Sandbax/Bekeley PP GARepestany/] | £+ Erors and Warings 3
B toy/{| O3 Sirthesis Messages
D2- Bin2HexLED (C:/SVN/Sandoa Berkeley FPGAReposton/ [Syrthesis Message: | s Baiion A
| D7 - Bin2Hecl D (C:/SVN/Sandbosc Berkeley FPGARspostory/| | [Transaton Messages S Stmrary
- [7) D08 - B2HexLED (:/5VN/Sanbox BerkeleyFFGARepostony [Map Messages [o partiion irformation was found.
[Place and Rewte Messages
[Timing Messages Detailed Reports a
Bigen Messages Report Name Status Generated Erors Warmings Infos
< 3
[l Curert Messages ;
o8 Souces | [y Fles | gy Snapshots |) brares | _DqudRE o Siiheds Feot
’ > Translation Report
i+ [Synthesis Report o R
[Translation Repart o Fepol
! Pgmcmeszd':;“f;m D o B Piacs and Routs Regot
= o ng Smm Project Properties Stalic Timing Repott
e flew Source Enable Erhanced Desan Sumay || [igan Fepot
5 Vie Design Summary [Enable Message Fitering
Design Liities - O Display Incremental Messages
Date Generated: 08/23/2008 - 10:2731
& UserConstrite Evhanced Design Sunmay Corlerts N
5-S{) Syrthesize - Synplfy Fro - ¥ Show Partion Dats
(@ mplemert Design O Show Erors
[Generete Programming Fie LI Stow Wamings
: 1 Show Fsiing Constraints
B0 Corfigue Target Device 0 o ot o
i ow Clock Fepa
@& Analyze Design Using Chipscope
ﬂc Processes)
L Design Summry
Started : "Launching Design Summary™.
O] b
Corscle | @B | g Wamngs | @Te sl | g FrndinFes |
fioc

your design. It contains the assignments for various pins on the chip to wires that you can use in your
design. Inside FPGA_TOP_ML505 you will find several TestHarness modules, and only inside them will
you find your actual Accumulator or ALU. Working with the TestHarness modules will be the focus of
Section 6.1.3.

Before you run any tests on hardware, however, you must reconcile any syntax errors in your Verilog
handiwork.

6.1.2 Running Synplify: Syntax Checking and Schematic Generation

This step will acquaint you with Synplify Pro, including its syntax checker and ability to generate
schematics from your Verilog. Beneath the covers, this step will be performing the Design Parti-
tioning step (see Section 3.2) in the CAD flow. A fringe benefit of this tool is that it comes with several
extremely useful utilities for analyzing and checking your design.

1. Select Implementation from the Sources for: pull down in the Sources box.
2. In Xilinx ISE select FPGA_TOP_ML505 from the Sources box.

e This will cause a long list of implementation steps to appear in the Processes box.
3. Constrain the clock frequency.

(a) Right-click Synthesize - Synplify Pro and click Properties.
(b) Uncheck Auto Constrain and set Frequency to 1.0.

(c) Click Ok.
4. Double-click Synthesize - Synplify Pro.

e This will run the Design Partitioning tools on your design.

e If there is an X or a = next to the Synthesize - Synplify Pro step, this means that there
has been an error or warning.

e To see the errors and warnings from Synplify Pro, double-click the Synthesize -
Synplify Pro — View Synthesis Report step.

Once you find that you have errors in your Synthesis Report (you probably will), you must go
through the Synthesis Report and fix them. This can be very daunting as the Synthesis Report is quite
dense. Program 1 shows an example fragment from a Synthesis Report.

Program 1 Synthesis report example

@N: CG364 :7C:\Test.v?:21:7:21:10| Synthesizing module Test

@W: CG133 :7C:\Test.v”:26:15:26:19|No assignment to IfOut

@WV: CL153 :7C:\Test.v”:26:15:26:19|% Unassigned bits of IfOut
have been referenced and are being tied to 0 — simulation

mismatch possible
@V: CL159 :”C:\Test.v”:24:14:24:18|Input Reset is unused

Consider the first line. @N denotes the entry type (there is one entry per line and they may be QW
warnings, QE errors or QN notes). C:\Test.v denotes the path to the module that is responsible for
throwing the entry. 21 (the left-most number) denotes the line number in the parent module. Lastly,
the text at the far right offers a brief summary of the entry.

If running Synplify Pro fails, it is because you have QE or error entries in your design. You must
fix, rerun, fix, rerun, ... etc these errors until running Synplify Pro does not throw errors
anymore. Don’t worry about @W or @N. You are guaranteed to get them, and they will mostly be
benign in the case of this circuit.

After your design has passed the point of having no errors (as far as Synplify Pro is concerned), it is
time to look at the schematic of your circuit for visual aided debugging.

1. To view a schematic of the circuit double-click on the Synthesize - Synplify Pro — Launch
Tools — View RTL Schematic step.

(a) This will launch Synplify Pro and automatically open the RTL Schematic.
(b) Navigate through the schematic using the Synplify Navigation Bar (see Figure 5).

e You can look inside modules using the “Push/Pop” Navigation Bar buttons.

Does your circuit look correct? Remember that the first step in the design entry process is to come
up with a design that can be scribbled on a piece of paper. The RTL Schematic should have replicated
your vision to the gate and register. Look carefully for wires that you think should be connected
in your design but are disconnected or connected incorrectly. This is often due to misspelling
a wire in your circuit®.

6.1.3 Hardware Verification

If your circuit looks correct, its time to test your circuit on actual hardware using our TestHarness
modules. The TestHarness (or more accurately the Tester that is instantiated within the TestHarness,
shown in Figure 6) works by comparing the output of your circuit with the output of a working circuit

4Synplify Pro will not normally throw an error if your design contains wires that are spelled incorrectly.
It is a part of the Verilog standard to initialize unknown wires as 1-bit wires. This will cause many a bug in your circuits
throughout this semester. Using the RTL Schematic to quickly pinpoint disconnected wires will save you hours
over the course of the project.

Figure 5 The Synplify RTL Navigation Toolbar

Zoom Full
(Show the whole Sheet)
Previous View Z00m In Back
(WebBrowser Style) ¢ (Previous Sheet, Same Module)

a o Q Ig‘ Q Q .'1_3_ QJ @, _» N <+——selectTool

N i

Next View Zoom to 1x Zo0m Out Forward
(WebBrowser Style) (Next Sheet, Same Module)

Push/Pop
(Click Module to See Inside)

that does the same thing. Specifically, there are two TestHarness modules: one for the ALU and one for
the Accumulator (this is purely for your convenience, as it is useful to be able to verify the ALU without
the Accumulator). Both work in exactly the same way: your circuit, alonside ours as a “black box”,” is
fed a stream of inputs from a simple up-counter (a circuit that counts up by ‘1’ every cycle). When the
counter reaches its maximum value (its “saturation value”) it stops. At this point, if your circuit passes
all tests, a success LED turns on. If there was an error, an error LED turns on to indicate failure (and
the counter will pause at that point).

Figure 6 The simplified Tester module

Clock Counter Enable counter?
wA - wA l
ALUO A
P .| Circuit under Test TA Circuit
3b " (‘CuT)
==\
V_Iy‘
v % /,//
Success| | Error

By default, the TestHarness circuits offer very little visibility into why your design fails if your
design does indeed fail. In order to make the TestHarness modules more useful, you are allowed to
modify them to fit your debugging needs. Specifically, you may add any Structural Verilog to
FPGA_TOP_ML505 or to the TestHarness modules. For example, you can connect LEDs up to

5In order to make this assignment realistic we have given you an EDIF black box for our implementations
of ALUBItSlice and AccumulatorBitSlice, namely Behavioral ALUBitSlice.edf and BehavioralAccumulatorBit-
Slice.edf. These files can be easily synthesized, but are nearly nearly impossible to read.

10

various wires in each TestHarness for added visibility into why your design fails®.

When you finish making your modifications, it is time to push your Verilog from Synplify Pro to the
FPGA. In Xilinx ISE, this process is fairly straightforward, but is better broken up into two parts. First,
in order to properly synthesize a black box, such as the ALUBehavioralBitSlice.edf file we have given
you, you must take a few extra steps before running the tools that will push your design to hardware:

1. Make sure to add the following shell Verilog file(s) to your project:
(a) ALUBehavioralBitSlice.v

(b) AccumulatorBehavioralBitSlice.v
2. Set the Macro Search Path
(a
(b
(c

(d) Set the Macro Search Path to the exact directory where your copy(ies) of the .edf/.ngc files
reside.

Make sure FPGA_TOP_ML505 is highlighted in the Sources box.
Right-Click on Implement Design in the Processes box.
Go to the Translate Properties tab.

)
)
)
)

3. Your project should now be able to build with black box files and core files properly.
Second, and at last: you must invoke all of the tools on your design to bring your Verilog to life:

1. In Xilinx ISE make sure FPGA_TOP_ML505 is still selected in the Sources box.

2. Double-click Synthesize - Synplify Pro and fix any errors that it reports back through the
Synthesis Report.

3. Invoke the Xilinx Place And Route tools by double-clicking on the Implement Design step
in the Processes box.

e This will run three sub tools: Translate, Map and PAR.

e Ignore any warnings from these steps only in this lab. They will often give warnings that can
be safely ignored.

4. Double-click Generate Programming File (BitGen).
5. Double-click Configure Target Device (iMPACT).

In the future, you don’t have to explicitly click all of the above tabs in order to run the tools. If you
click Configure Target Device, all of the tools that it depends on will run in automatically.

As you find bugs in your design and have to make changes, keep in mind the time it takes to generate
a schematic versus the time it takes to verify on hardware. It is sometimes, for a design of this size, very
easy to find a bug in an RTL Schematic. Additionally, you do not need to run all of the tools and then
configure the board to see the schematic. Consider these development time tradeoffs when debugging
your circuit: you will save yourself a lot of time!

6.2 Circuit Analysis

Now that your circuit is functioning the way it is supposed to, we are going to perform a timing and
resource analysis on it This will allow us to see what is happening to our Verilog, insofar as it is being
mapped to FPGA components, so that we can make more informed design decisions in the future. Proper
use of the skills you learn in this exercise will carry you far in digital design, as space and time are major
considerations for any design.

6For some code examples of how to attach LEDs and DIP switches to your design, refer to the commented sections in
FPGA_TOP_ML505.
7If you have any problems running iMPACT, refer to the FPGA Editor lab for a refresher.

11

http://inst.eecs.berkeley.edu/~cs150/sp10/Lab/Lab1/Lab1.pdf

6.2.1 Resource Analysis

In the PreLab (see Question la on the check-off sheet), you were asked to find out how many resources
a 1-bit ALU mapped to on the FPGA. We would like to extend this concept to our working N-bit
Accumulator.

Specifically, we are interested how much of the following is taken up in a given N-width implementation
of our Accumulator:

1. Occupied SLICEs (see check-off Question 2a).
2. SLICE LUTs (see check-off Question 2b).

3. SLICE Registers (used as flip-flops) (see check-off Question 2c¢).

Based on your thought process developed in the PreLab, you can probably derive a decent guess
for these numbers right now. To verify your guess, we will use the generate block that we used to
implement our Accumulator to change the width of the Accumulator without rewriting any Verilog.

1. In the Sources box, right-click on Accumulator which is nested underneath FPGA_TOP_ML505
and select Set as Top Module.

e This will tell the tools to only PPR our Accumulator, as opposed to the Tester and any other
baggage in FPGA_TOP_ML505.

e We can now get an accurate resource estimate of only the resources taken up by the Accumu-
lator.

2. In Accumulator.v, modify the value assigned to the parameter called Width and rerun the tools
to find out how many resources your Accumulator takes up.

In order to test your resource consumption theory, you will tweak Width in Step 2, above, until you
can come up with a generalized formula for determining resource consumption.

Of course, the last step of this story is how to actually use the tools to find resource consumption.
This is very simple; specifically:

1. Double-click Implement Design step in the Processes For Source box.

2. After the Map process completes (i.e. has a green check next to its name), double-click on View
Design Summary in the Processes For Source box.

3. Inspect the Design Summary for resource totals.

Before proceeding to Section 6.2.2, answer the check-off Questions 2a, 2b and 2c¢ based on your
observations and experiments.

6.2.2 Timing Analysis

The second experiment that we would like to run analyzes the delay on the wire output from the FDRSE
to the input of an ALU. This corresponds to the red path in Figure 7.

Of all of the paths in the Accumulator, this one (along with the delay through the ALU and the
delay from the output of the ALU to the input of the FDRSE) is the most interesting because it is likely
to be your critical path. We’ll leave out the delay through the ALU and the delay from the output of
the ALU to the input of the FDRSE for now, as the ALU is implemented in terms of LUTs (which we
know the delay through) and connections from LUTs to flip-flops, both in the same slice, are statically
routed. The only part of the path with varying delay is the path from the output of the FDRSE to the
input of the ALU, which is exactly the path highlighted in Figure 7.

Before we proceed, we have to set FPGA_TOP_ML505 as our ‘top’ module again®. Remember, we
only made Accumulator our top module in Section 6.2.1 because we wanted to see only its resources get

8For instructions on how to specify a ‘top’ module, refer to Step 1 in Section 6.2.1. The Technology Schematic sits
right alonside the RTL Schematic in the Synplify tree.

12

Figure 7 The path in the Accumulator whose delay we would like to analyze

Result

I
14

b 4

ALUOpT Clock

totalled by the tools. If we are going to perform any useful timing analysis, we need to see Accumulator
in the context of a larger design. For the sake of this experiment, we’ll use the Accumulator that was
instantiated within the Tester module.

In order to compute delay, you first have to find the net that you are wanting to compute the delay for.
This can be done in FPGA Editor, but is sometimes non-trivial because FPGA Editor doesn’t present
an abstract view of your circuit. As such, we will use the Synplify Pro Technology Schematic’.
The Technology Schematic is a sister to the RTL Schematic that shows you a graphic view of your
design after Partitioning: namely, at the level of LUTs and flip-flops. Nets (or wires) that you will find
in the Technology Schematic will have the same names in FPGA Editor. Furthermore, SLICEs that
drive a single net are typically named after that net. Thus, the Technology Schematic will allow you
to easily find a net or SLICE of interest in FPGA Editor.

After you find the requested net (see Figure 7), open FPGA Editor using the PPR’ed .ncd file.

1.
2.

Double-click Implement Design step in the Processes For Source box.

After the Place and Route process completes, open FPGA Editor by double-clicking View /Edit
Routed Design (FPGA Editor), which can be found under Implement Design — Place
and Route.

Once in FPGA Editor, find the net that you located by name in the Technology Schematic.

How was this net routed in your design? In other words, how does it get from the output of the
FDRSE to the input of the ALU? Answer this question on the check-off sheet (Question 3a).

Left-click on this net and click on the delay button at the far right of the screen on the Button
bar.

e The Console Output window will show you the delay from the net’s driver to everywhere
else in your design that the net is connected.

e Connections will only tell you which SLICEs are connected to your net. As such, you will
have to look at each SLICE (they will probably have useful names) to determine which one
implements the 1-bit ALU and FDRSE that you are interested in.

Find the delay on the net shown in Figure 7 and mark this delay down on the check-off sheet for
Question 3b.

Now, you built an N-bit accumulator. We have just seen the delay on a single 1-bit wire that feeds
back from an FDRSE to the input of the ALU. What about the other wires? Will they share similar
delay or differing amounts of delay? Based on your answer for Question 3a and from direct inspection,
answer this question on the check-off sheet (Question 3b).

9To open the Technology Schematic, follow the instructions for opening the RTL Schematic (Step 1 in Section 6.1.2).

13

7 Lab 2 Checkoff

ASSIGNED | Thursday, January 28"

DUE Week 4: February 9* — 117" at beginning of your assigned lab section
Man Hours Spent Total Points TA’s Initial Date Time
/100 / /
Name SID Section
1o Prelab ..o _ (30%)

(a) What FPGA resources (be precise) does a single ALUBItSlice instance map to on the Virtex5
xchvlx110t FPGA?

(b) What happens to the state of the FDRSE when its R and S inputs are both high?

(¢) In Question 1b, when do the values on the R and S lines actually matter? Any time? At the
rising edge of the clock? Explain why, based on the FDRSE’s description.

(d) Imagine an Accumulator such as the one in Figure 2 without the flip-flop at the output. In
other words, the output feeds directly into the second input of the ALU. Does this circuit
make sense? Explain is behavior.

2. Resource Analysisonininin i _ (35%)

(a) # of occupied SLICEs as a function of Width

(b) # of SLICE LUTsS as a function of Width

(¢) # of SLICE registers (used as flip-flops) as a function of Width

3. Timing Analysisttt e — (35%)

(a) How was the net from the output of the FDRSE to the input of the ALU routed?

(b) Delay (in ns) from the output of the FDRSE to the input of a LUT that implements an
ALUBItSlice

(c) Is there significant difference in the delay between the different wires that make up the bus in
an N-wide implementation? Why?

Rev. | Name Date Description
C Brandon Myers 1/26/2010 | Moved to Spring 2010.
B John Wawrzynek | 1/30/2009 | Proofread and fixed various issues
& Chen Sun & Ilia
Lebedev & Chris
Fletcher
A Chris Fletcher & | 1/22/2009 | Wrote new Lab; Designed to replace old “Design with Verilog”
John Wawrzynek and “Intro to CAD Tools” labs (some sections of pre-PAR tool
flow and project setup taken from “Intro to CAD Tools” lab).
Synplify Pro “Synthesis Report” (Section 6.1.2) material inte-
grated from Chen Sun’s Lab Lecture slides from Fall 2008.

15

http://www.cs.berkeley.edu/~johnw/
http://cwfletcher.net/
http://cwfletcher.net/
http://cwfletcher.net/
http://www.cs.berkeley.edu/~johnw/

	Time Table
	Objectives
	Addendum to the CAD Flow
	Design Entry
	Design Partitioning
	Translate, Map, Place and Route
	Translate
	Map
	Placement
	Routing
	PPR: Partitioning vs. Place and Route

	After PAR: Design Tuning and Device Configuration

	Lab Prerequisites
	Allowed Verilog Constructs
	Using Xilinx FPGA Primitives
	Structural Accumulator
	Coding the Accumulator

	PreLab
	Lab Procedure
	Circuit Debugging
	Project Setup
	Running Synplify: Syntax Checking and Schematic Generation
	Hardware Verification

	Circuit Analysis
	Resource Analysis
	Timing Analysis

	Lab 2 Checkoff

