University of California at Berkeley
College of Engineering
Department of Electrical Engineering and Computer Science

EECS150, Spring 2010
Homework 2 Solutions: FPGAs, LUTs and Basic Synchronous Digital Logic

1. Area: The optimal solution in terms of area is 83, which corresponds to a 3,3,2' configuration as
shown in Figure 1: Chart (A). Notice that the 2,2,2,2 solution yields a cost of 15 x (22 +2) =
90. The reason that the 3,3,2 variety saves some on cost is because the number of inputs
does not exactly fit into sets of 3-LUTs (shown in light green in the figure). Notice also that
the cost of a 4-LUT is 2* +4 = 20 yet the cost of 3x 2-LUTs (which make a 4-LUT) is
only 18. Furthermore, a 5-LUT costs 2° 4+ 5 = 37 yet the equivelent circuit (2x 2-LUTs
and a 3-LUT) costs only 23. These observations tell you to never use the larger in-degree’
LUTs in the area optimized solution.

Delay: Since LUTs have delay proportional to their in-degree (delay= n), there are many op-
timal delay solutions, all of which have a delay of 8. Ideal configurations include (but are
not limited to): 2,2,2,2 — 3,3,2 — 4,4 — 22,4, and 2,4,2. The table in Figure 1: Chart (B)
shows the 2,24 case.

Recall that the 4-LUT and 3 x 2-LUT configuration (both of which can implement a 4-LUT)
in Part 1 had different costs. This is not the case with this new cost function (3x 2-LUT has
a cost of 4 (as two of the 2-LUTs operate in parallel) and the 4-LUT, itself, has a cost of 4).
So, in this part you can interchange different in-degree LUTs and still end up with the same
cost.

In general, optimal solutions will be balanced trees. That is, your aim is to minimize the
maximum length path from the root of the tree (the last logic gate) down to the leaves (the
entry-point logic gates). The cost of each hop is given by the cost function, which in this
case is just the number of children at each node in the tree.

In terms of digital design principles, minimizing the worst path in a pure combinational
logic network refers to parallelizing parts of that logic so that more can happen at once (a
central theme to hardware design). In hardware terminology, the maximum path length that
you are trying to minimize is referred to as the critical path.

Interestingly enough, one of the optimal delay configurations (3,3,2) is also the optimal area
configuration!

'Each number refers to the in-degree of the LUTs at that level in the reduction.
’The number of inputs into the LUT.

(A) Different LUTs (B) Different LUTs

O |a0 |a3 | a6 | a9 [a12|wO [w3 | w5 0 |a0 [a2 | a4 | a6 | a8 |a10|a12|a14| bo | b2 | b4 | b6 | cO
1 |al|a4|a7|al0|al3|wl [w4 | w6 1 |al|a3|a5|a7|a9 |all|al3|al5|bl | b3 | b5 |b7 |cl
1) 2 | a2 | a5 | a8 |al1|a14| w2 |a15 12} 2 c2
= 3
c 3 £ 3 c3
= 4 = 4
2 2
o - 5
6 6
7 7
QOut | wo|wl|w2|w3|ws|ws|wé Out Out [bo | b1 |b2|b3|ba|b5|b6|b7|co|cl|c2]c3|out

Figure 1: Problem 1. Chart (A) corresponds to area analysis and Chart (B) corresponds to delay
analysis. In both, cost is shown in red.

2. The mystery circuit was a 2 : 1 MUX and the various logic gate implementations are shown here:

Oa—) 1a_>
AE—»D%Q—»Out AE—»DzA»Out
B —» 0 —»

A2y
BC_)Dz@_) Out

| g - Out
B—> > >
‘ a b
C

Note that the and, or and not gates each require a single MUX while the zor requires two MUXs.
For the and, or and not gates, one way to think about this problem is that you have two and gates,
an inverter, and an or gate per MUX. Your objective is to extract the and, or or not function from
this composition of gates. In order to do this, keep the following in mind:

Ael=A
Ae0=0
All=1
Al0=A

These properties effectively allow you to eliminate gates in the MUX so that you can isolate the
gate that you need.

A key insight with the xor gate is that you use one input to select between the second input and the
second input’s complement (draw out the truth table to see this). In this case, input A is the signal
you are sending to the output and input B is making the decision between A and its complement.
Think about the function of the and gate with an inverted input! This logic is used as a gated
inverter for the xor’s purpose.

3. Shown below are the three “mystery circuits:”

(i— Edge Detector) (ii — ‘Dual’ Edge Detector) (iii — Pulse Widener)

In | 5 outB n | ' outC

Clock ’) Clock)) Clock

7 8 9 10

[N T A O O

Clock

In

Out A

TTL;H

[i
| |
[[

L []

gy

OutB

OutC 74

The first circuit (i) is called an edge detector. This circuit generates a pulse (a signal that is high
for at most one clock cycle) at its output when the input changes from a level O to a level 1. This
particular edge detector is called a “positive edge detector” because it only detects the rising edge
of the input signal. This need not be the case: if you switch which input into the and gate is
inverted, you will get a “negative edge detector.”

The extension to this family of circuits is the second mystery circuit (ii), called the dual edge
detector. The dual edge detector pulses whenever the input’s rising or falling edge is seen at the
input.

The final circuit in the set (iii) is known as a pulse widener. The pulse widener in this problem
will extend any signal it sees at its input by one cycle. The pulse widener can be extended to
widen input signals to arbitrary degrees. Can you think of how? (Hint: the design that you have
right now will serve as a “tile” that you can use over and over). An example of a pulse widener
that stretches the input for three cycles is shown here:

Out
y

Clock—e@——-

P

>

All three of the original circuits are implemented in SLICE-Ievel logic in Figure 2. Since the only
difference between the circuits is the gate at the output (which can be partitioned into a LUT in
all cases), all three look the same from a Virtex-5 CLB perspective.

D&

6LUT

.

couTt

Reset Type

oSyne

O Async

CS%

c4 >
c3 o
cz
c1 [

I,

g

NS AN W AN __/\,/__/__/
C,j

= > BMUX
JD o
—B
| oFF
oLATCH >D
BX oiNTi @ BQ
D giNiTo
CE OSRHIGH
O SRLOW
K "SR Rev
]
:1] | |
> AMUX
ASCO—A8 D
[n]
A5 C>—45 DRau 1 A
A4 [—] A4 - oFF
A3 [D—|A2 05 AX T
Az2[O—A2 o £ SRHIGH
A oAl CE O
o oK "R Rev
;;: g 0 N T |
CE > L B
CLK [{

Figure 2: Problem 3 (SLICEL placement and routing). Red shows the edge detector. Blue shows the
dual-edge detector. Green shows the pulse widener.

4. Here is one possible CLB partitioning:

——— |

[- — — — — —

i1 p T2 A
FF |

'@_J:F) A

1 i3 || |
iJT [I| i |
\
__________ A
2 3
Different CLBs
@ 1 2 3
8 a io| f
e -
E b b|i4
o .
L c i2
i) -
§_ d i3
3 el 1'0x
g S [1bo| [1b1l
2 y|b| [ou
- f
O

In the third CLB, e = 1’0z indicates a “don’t care” (either a logic 1 or 0). We explicitely set
this input to some logic value because we are using the MUX in this CLB to pass its value to the
flip-flop (if left disconnected, a MUX input can cause failure at the output depending on how the
MUX is implemented).

Other valid partitions that yield a three CLB system exist for this problem. The second CLB can
terminate at the nor function and the third CLB can extend to the or, for example. If the CLB
was given a delay model like in Problem 1, both solutions would still have the same delay. The
primary constraints in partitioning the CLBs are as follows:

(a) The ¢y — b flip-flop must be its own CLB because there is no CLB function that supports
combinational logic after the flip-flop.

(b) There must be two CLBs implementing the combinational logic after the first flip-flop and
before the second flip-flop. This is because there are five inputs driving this combinational
logic at different stages.

5. For those who are interested, the datasheet that covers the Spartan-3 architecture is ug331.pdf .

(a)

(b)

(©)

Despite the Spartan and Virtex being different families, the Spartan (like the Virtex) uses
dedicated MUXSs to build larger LUTs. Figure 3 shows the path that connects the two 4-
LUTs together. In this case, the FSMUX is responsible for joining the outputs of the two
4-LUTs together.

The primitive distributed RAM cell in the Virtex-5 is a 32 x 1 cell (the notation being
Depth x Width). This comes directly from the fact that the Virtex-5 LUT primitive is
the 5-LUT. Five inputs gives us 25 = 32 addresses and the 5-LUT has a single-bit output
only. From this, given that the Spartan-3 has 4-LUT primitives, we can infer that the dis-
tributed RAM primitive on the Spartan-3 is a 16 X 1 memory. (Although it isn’t really fair to
guarentee this given that the Spartan-3 is an arbitrary architecture, it is indeed the case). In
both cases (Spartan-3 and Virtex-5), distributed RAM primitives can be built up into larger
memories using the F. .. MUXs.

This question could have been interpretted in several ways and was meant to be open-ended.

First, the Virtex-5 has 4 6-LUTs per SLICEM and the Spartan-3 has 2 4-LUTs. Thus, since
there are 8x Virtex-5 SLICEMs and 16x Spartan-3 SLICEMs, there are technically the
same number of LUTs.

The problem, however, doesn’t specify the average logic in-degree in the design. That is,
how many inputs are required to drive a single bit of output in some block of combinational
logic. If the in-degree was greater than 4, then perhaps the 6-LUT architecture would save
LUTs.

The problem also didn’t specify whether different combinational outputs were logically
driven by overlapping sets of inputs. If this was the case, and the overlap was confined to
5 inputs, then the effective LUT count on the Virtex-5 would have increased because each
6-LUT is made up of two 5-LUTs. The Spartan-3 does not support this by design (the
MCI15 output is used to implement SRLs and cannot be used to implement 2x 3-LUTs per
4-LUT).

The problem does say that the design uses a lot of 2 : 1 MUXs relative to other logic
functions. If we have 2x the LUTs on the Virtex-5 because of 5-LUTSs, then the Virtex-
5 might be more ammenable to this design. The Spartan-3 has trump card, however, and
implements 2 : 1 MUXs directly in the SLICE (see FiMUX towards the top of the SLICE.
The designers of the Spartan chips probably recognized that MUXs were awkward in 4-
LUTs (a 3-LUT would implement a 2 : 1 MUX and a 6-LUT will implement a 4 : 1 MUX).
As a result, coupled with the fact that these circuits are often needed in practice, they built
support directly into the fabric. Note that there is only one 2 : 1 MUX per SLICE. This
might not seem like a lot. Think about the implications of there being more than one. If
that were the case, then the assumption would be that the average design would be able to
support just as many 2 : 1 MUXs as LUTs!

http://inst.eecs.berkeley.edu/~cs150/sp10/Homework/ug331.pdf

SHIFTIMN

CouT

CYSELG BRI
1 - —> YB
i (2}
FRINA [Ih] FibLUX —
FXINE > GYMLIX
XOAG
A
4 > '_u =
G[4] # A1) &)
P H GLuT DYMUX
[| LA wale wes o Qp——-+_=>Ya
P Gi| | @2 | FEY
Do MU Ws Dl cE
ALTOIG - —] l ek
- e __i o SH REW
] -
P !
P GAND .
P o "
BY > 4 CoG
i 1 Tep Portion
CECS— |
CLKC=—— -
SR> | [
H |
Y i WSG
L | === WE
i cK
i WSGEN
SLIGEWE] {1231 |=mmmmmmmemefrmmmmeeme={ WE
| N S— =]
i i E Wk Common Logic
| | H [CYMUXE Iy #BMUX
= H [I1E_ MU 1 —
i i P o AN
& i -1 FsMUX ——
P : . H CYSELF j} — s
E E I XDRFLh
| " D> hh =
Fldi] Af4:1] o
FxMUX
F-LUT e 2R REV
WF4:] MC1s] af——_—xn
H = FFX
! CE
: CYOF b
- CYINIT
A4 T
BX = £7os BXOUT
Bottom Portion
LEGEND: —— Logie Functions ‘,
—— Distributad FAM and SHIFTOUT CIM
Shift Register Functions UGIE_&F 02 11070e

Figure 3: Problem 5.

