
EECS150: Homework 5, Transistors, Single-cycle MIPS Processor

UC Berkeley College of Engineering
Department of Electrical Engineering and Computer Science

1. Draw the circuit diagram for a 2:1 Multiplexer using only 6 transistors.

See Figure 1.

Figure 1 A 2:1 Multiplexer. The control signal S is used to control two transmission gates that both
connect to the output but the inverter guarantees that only 1 transmission gate is on at a time and thus
the output is ”selected.”

2. Draw the circuit diagram for a positive level sensitive latch using only inverters, and tri-state
buffers.

See Figure 2.

Figure 2 Positive level sensitive latch. To get this from the latch presented in the lecture slides, just
replace all the transmission gates with tristate buffers, which are functionally equivalent.

1



3. Draw a transistor-level diagram showing all the details of a negative edge-triggered flip-flop. Your
circuit should have only two inputs, clk and d, and two outputs, q and q.

See Figure 3.

Figure 3 Negative edge-triggered flip-flop. Just cascade a positive level sensitive latch with a negative
level sensitive latch. To make this positive edge-triggered, just flip the ordering of the two latches
(negative level sensitive first).

4. Draw a transistor-level circuit diagram for a switching circuit with two data inputs x0 and x1, one
control input cross, and two outputs y0 and y1, with the following function:

if (cross == 1)then y0 = x1, y1 = x0 else y0 = x0, y1 = x1

See Figure 4.

5. Build the FSM in exercise 4.22 down to the level of transistors. Please draw your circuit diagram
hierarchically (i.e. implement an OR gate using transistors, then start using it in your main circuit).

We will begin thinking about how to build this FSM by first splitting it into three different parts:
the State registers, the output logic, and the NextState logic. The State registers, shown in Figure
5, is easy to build - it is just 2 D-flip flops in parallel, each responsible for holding one bit of the
state. Each flip flop is implemented in Figure 6 and note also that they have an asynchronous
reset.

The output logic is relatively straightforward - just see whether State equals the encoding for S1

or S2, namely whether State == 2’b01 or State == 2’b10. This is implemented in Figure 7.

The next state logic is a bit tricky. It is probably easiest to begin with a truth table, such as the
one in Table 1. Note that the NextState function has four inputs (State[1:0], A, and B) and two
outputs (NextState[1:0]).

With the truth table in hand, we can now use Logisim to help us quickly draw the equivalent
circuit, shown in Figure 8.

We can implement two-input OR and AND gates by just using NOR or NAND gates followed by
an inverter, shown in Figure 9.

How all three pieces connect together to form the FSM is shown in Figure 10.

6. Consider the single-cycle MIPS processor presented in lecture this week. Remember, it executes
only the small set of the complete MIPS instruction set: add, sub, or, slt, lw, sw, beq.

2



Figure 4 We can build this circuit first by using the multiplexer-based circuit on the left. The output
of each multiplexer is connected to an output. The multiplexer simply selects which input, X1 or X2, for
the output to take. Then, we translate this implementation into transistor diagram on the right.

Figure 5 The part of the FSM that stores the State signals. There are 2 D-flip flops, one for each bit
of state.

3



Figure 6 Implementation of a positive-edge triggered flip flop with an asynchronous reset.

Figure 7 Implementation of the output logic

Assume that it has 1K words of instruction memory and 1K words of data memory. The instruction
memory can hold any sequence of valid instructions. Suppose we want to describe this processor
as an FSM (i.e. draw out a state transition diagram). How many state bubbles are in the STD?
Note: don’t bother to actually draw the STD.

This problem can be done by just enumerating through all the possibilities of values each state
element can take.

PC: There are 1K words inside instruction memory, thus, there are 1024 = 210 different possible
values for the PC.

Data Memory: 1K words inside data memory, each word can take up 232 different values, thus
(232)1024 = 232·1024 possible values for the data memory.

Instruction Memory: This is a tricky one, since we only have 7 possible instructions. Each
instruction is also limited by the different possibilities of each field. Lets begin by looking at
each one.

add: The RS, RT, and RD fields can each take on 25 different values. Thus there are 25·3 = 215

different add instructions.

4



Table 1 Truth table for the NextState function

ST1 ST0 A B NS1 NS0

0 0 0 0 0 0
0 0 0 1 0 1
0 0 1 0 0 1
0 0 1 1 0 0
0 1 0 0 0 0
0 1 0 1 0 0
0 1 1 0 0 0
0 1 1 1 1 0
1 0 0 0 0 0
1 0 0 1 1 1
1 0 1 0 1 1
1 0 1 1 1 1
1 1 0 0 0 0
1 1 0 1 1 1
1 1 1 0 1 1
1 1 1 1 1 1

Figure 8 Implementation of the NextState logic

5



Figure 9 Implementation of an OR (left) and AND (right) gate

Figure 10 Implementation of The FSM

6



sub: Same as add, 215.
or: Same as add, 215.
slt: Same as add, 215.
sw: The RS and RT fields can each take on 25 different values. The IMMED field can take

on 212 different values, since there are 1K data words, each of which is 4 bytes (sw, lw
are byte-addressed. Thus, 222 different sw instructions.

lw: Same as sw, 222.
beq: Again, RS and RT fields each take on 25 different values. However, remember that the

branch offset is given in words. Thus, since there is only 1K of instruction memory, there
are only 210 possible values for its immediate, meaning only 220 different beq instructions.

To get the number of possibilities for each word of instruction memory, we have to sum all
the different possibilities of instructions together - 4·215+2·222+220. Since there are 1K words,
the number of different values that the instruction memory can take is (24·215+2·222+220

)1024.

The number of state bubbles is just the number of different possibilities for all the state elements
multiplied together, namely 210 · 232·1024 · (24·215+2·222+220

)1024. This number is many orders of
magnitude larger than the predicted total number of atoms in the universe!

7



7. DDCA 7.3

(a) sll

Modifications to the ALU: Figure 11.

Modified ALU Control: Figure 12.

Modified ALU Decoder: Figure 13.

Modified Datapath: Figure 14.

Figure 11 ALU Modifications for DDCA 7.3(a)

Figure 12 ALU Control Modifications for DDCA 7.3(a)

(b) lui

Modified Decoder: Figure 15.

Modified Datapath: Figure 16.

(c) slti

Modified ALU Decoder: Figure 17.

Modified Main Decoder: Figure 18.

8



Figure 13 ALU Decoder Modifications for DDCA 7.3(a)

Figure 14 Datapath Modifications for DDCA 7.3(a)

Figure 15 Decoder Modifications for DDCA 7.3(b)

9



Figure 16 Datapath Modifications for DDCA 7.3(b)

Figure 17 ALU Decoder Modifications for DDCA 7.3(c)

Figure 18 Main Decoder Modifications for DDCA 7.3(c)

10



(d) blez

Modified ALU: Figure 19.

Modified Datapath: Figure 20.

Modified Decoder: Figure 21.

Figure 19 ALU Modifications for DDCA 7.3(d)

Figure 20 Datapath Modifications for DDCA 7.3(d)

11



Figure 21 Decoder Modifications for DDCA 7.3(d)

(e) jal

Modified Datapath: Figure 22.

Modified Decoder: Figure 23.

Figure 22 Datapath Modifications for DDCA 7.3(e)

Figure 23 Decoder Modifications for DDCA 7.3(e)

(f) lh

Modified Datapath: Figure 24.

Modified Decoder: Figure 25.

12



Figure 24 Datapath Modifications for DDCA 7.3(f)

Figure 25 Decoder Modifications for DDCA 7.3(f)

13



8. DDCA 7.4

Modified Datapath: Figure 26.

Modified Decoder: Figure 27.

Figure 26 Datapath Modifications for DDCA 7.4

Figure 27 Decoder Modifications for DDCA 7.4

14



9. DDCA 7.10

Modified Processor Module: Figure 28.

Modified Controller Module: Figure 29.

Modified Decoder Module: Figure 30.

Modified ALU Decoder Module: Figure 31.

Modified Datapath Module: Figure 32.

Additional Module: Figure 33.

Modified ALU Module: Figure 34.

Figure 28 Processor Module Modifications for DDCA 7.10

Figure 29 Controller Module Modifications for DDCA 7.10

15



Figure 30 Decoder Module Modifications for DDCA 7.10

Figure 31 ALU Decoder Module Modifications for DDCA 7.10

16



Figure 32 Datapath Module Modifications for DDCA 7.10

Figure 33 Additional Module for DDCA 7.10

17



Figure 34 ALU Module Modifications for DDCA 7.10

18


