
CS150 Spring 2009 Midterm Review Registers, Verilog, and Processors

Registers

Timing

Consider the diagram shown below:

a b c d

1. Given the above diagram, label:

a.

b.

c.

d.

Hint: the possible answers are setup time, hold time, clock-to-Q time, and maximum logic

delay. If multiple time frames can be labeled with multiple terms, list them all for

completeness.

Now let’s see if you really understand the concepts!

2. If I were to tell you that your register had the following characteristics:

a. Negative setup time

b. Negative hold time

How would you describe what was going on?

Note: Both of these notions do in fact exist; the Virtex-5 FPGAs that you have been using

have negative setup times!

CS150 Spring 2009 Midterm Review Registers, Verilog, and Processors

Design Optimizations

Consider the system below:

*
*

4

5

6

7

2

3

1

8

9

=
Input Output

Start

Start

We want to use the above system to calculate A*B == A*C, given 3 values A, B, and C. In truth,

‘*’ isn’t the ideal operator for this problem because we can reduce the entire computation

down to B==C. For the sake of the problem, assume ‘*’ performs some arbitrary operation

such that the result of the equality check cannot possibly be determined by looking at just

one operand going into each “multiplier” block. You may make the following assumptions:

1. Each register can fit exactly one value at one time and that each has Reset and Enable

signals.

2. The multiply (‘*’) blocks take 4 cycles (the values on registers 4, 5, 6, 7 must be steady

while a multiply takes place) after “Start” is asserted. If “Start” is asserted starting right

after the rising edge, the cycle it goes high in counts as cycle 1.

3. The delay through the equality (‘=’) block is 0.

Please answer the following questions:

1. Assuming time starts at a rising edge (count the first cycle as cycle 1), what is the fastest

that the A*B == A*C can complete? (I.E. by what cycle #?). Assume that you can assert

one of A, B, or C on the “Input” line at a given time.

To help organize this problem, you may want to consider listing what value is held by

“Input” over what time ranges and what the control signals (Reset, Enable) for each

register are set to over different periods of time.

CS150 Spring 2009 Midterm Review Registers, Verilog, and Processors

2. We want to optimize this system. What registers can we remove, while maintaining

functionality?

Verilog

For a comprehensive list of topics that will be covered, relating to Verilog, see the Midterm

information document on the website.

Verilog  RTL

Consider the following Verilog statement:

module complete_mystery(clk, we, a, di, d0);

 parameter Width = 4; // MUST be a power of 2

 localparam MemWidth = 16,

MemDepth = 64,

AWidth = `log2(MemDepth)+`log2(Width);

 input clk;

 input we;

 input [AWidth-1:0] a;

 input [MemWidth-1:0] di;

 output d0;

 wire [(Width*MemWidth)-1:0] memD0;

 genvar i;

 generate for (i = 0; i < Width; i = i + 1)

 begin:bit

mystery unit(.clk(clk),

.we(we & (a[AWidth-1:`log2(MemDepth)] == i)),

.a(a[5:0]),

.di(di),

.d0(memD0[((i+1)*MemWidth)-1:i*MemWidth]));

 end

 endgenerate

 assign d0 = ~|memD0;

endmodule

// NOTES:

The bugs with complete_mystery have been fixed, but the

circuit is still kind of odd function-wise. The most

important thing to take away from this problem is how the

memories are being cascaded, and what is going on with the 'a'

line into each memory (hint: separate the 'a' line into two

parts: a part that indexes into a single memory (low bits) and

CS150 Spring 2009 Midterm Review Registers, Verilog, and Processors

a part that chooses which memory we are indexing into (high

bits)).

 The `log2() macro can be found in Const.v, and does what you’d think it

does. I said ‘Width’ had to be a power of 2 because depending on Const.v (and

there are multiple versions out there… the non-power-of-2 case will either work

or not work. Let’s assume it doesn’t for this problem.

module mystery (clk, we, a, di, d0);

 localparam MemWidth = 16, MemDepth = 64;

 input clk;

 input we;

 input [5:0] a;

 input [MemWidth-1:0] di;

 output [MemWidth-1:0] d0;

 reg [MemWidth-1:0] ram [MemDepth-1:0];

 reg [`log2(MemDepth)-1:0] read_a;

 always @(posedge clk) begin

 if (we) ram[a] <= di;

 read_a <= a;

 end

 assign d0 = ram[read_a];

endmodule

Draw the circuit that this Verilog generates. Make sure to include all relevant

specifications to memories that you draw, including memory type,

synchronous/asynchronous, reads/writes, etc.

Verilog Stumpers

1. always@(*) vs. always@(posedge …)

2. wires vs. regs

CS150 Spring 2009 Midterm Review Registers, Verilog, and Processors

3. FSMs in Verilog

4. How can you generate latches?

5. parameters / generate

CS150 Spring 2009 Midterm Review Registers, Verilog, and Processors

Processors

Adding to a Datapath

1. Consider the single-cycle datapath (which should look familiar) below:

Now consider the instruction: XAdd rd, rs

XAdd performs the following operation:

temp  M[rd] + rs

rs  M[rd]
M[rd]  temp

Add whatever elements/control signals are necessary to implement the XAdd

instruction. As an extra challenge: try your best to minimize the number of cycles that

it takes to implement the complete XAdd instruction.

2. What can we do to remove the load delay slot? In other words, we want to be able to

execute this code without stalling the machine or stipulating a delay instruction:

lw $1, 0($sp)

add $2, $1, $1

CS150 Spring 2009 Midterm Review Registers, Verilog, and Processors

You may add as much additional hardware as you need to complete this problem. Be

sure, however, to add paths/control signals to whatever hardware you add so that your

pipeline still works.

