
EECS150: Spring 2009, Midterm Solutions

UC Berkeley College of Engineering
Department of Electrical Engineering and Computer Science

1 Processor Implementation (6 + 3 + 6 = 15)

This problem was worth 15 points. 6 points were given for hex instruction representations (2 points for
each instruction). 6 points were given for the datapath addendum (beq). 3 points were given for the beq

hex representation. Solutions which had enough errors to yield negative points were given 0 (instead of
a negative score).

1.1 Hex Instructions (2 + 2 + 2 = 6)

There were three instructions that you had to decode into hex. Each instruction was worth 2 points for
a total of 6. Most mistakes lost a single point. Regardless of how many points you lost on one of the
three subparts, you could only lose 2 points per subpart (so errors were localized to each subpart).

The subparts, their solutions, and common mistakes were:

nor $2, $1, $0 =⇒ 0x4440_0000

Common mistakes:

0x40C0_0000: Register swap (-1).

0x2140_0000: Register swap (-1).

sw $4, 3($5) =⇒ 0x1618_0003

Common mistakes:

0x1298_0003: Register swap (-1).

0x9418_0003: Register swap & write to RF[RC] (-2).

0x9488_0003: Register swap & write to RF[RC] (-2).

lw $6, 5($7) =⇒ 0xDC10_0005

Common mistakes:

0xDB10_0005: Register swap (-1).

0xF810_0005: Register swap (-1).

0x1B88_0005: Register swap & write to data memory (-2).

Register swapping errors were most common. This datapath sent the contents of RB to the data
input port on the data memory and always wrote back to the register file at the address given by RC.
Bear in mind that solutions which swapped registers and wrote back to the register file at address RC
received 0 credit (this was quite common).

As a general rule of thumb, an error in the first 2 hex letters was likely a register swapping issue. A
problem with the third hex letter could have been register swap related but was more likely a problem
with the ALUOp. A problem with the fourth hex letter was most likely writing to data memory when you
should not (see the lw instruction). Note that regardless of the value on the input of the write
port of the register file, the data will always get written (WE = 1’b1 always)! Also note that
solutions which set the * bit were not deducted points.

Aside from the common mistakes listed above, a complete point-loss guide is given below:

-1 Wrong offset/immed.
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-1 Register swap (some but not all registers were incorrect or swapped).

-1 Writing bad data to the register file.

-1 Writing bad data to the data memory.

-1 ALUOp error.

-2 Shifted bits (garbage hex word).

-2 All registers incorrect (or swapped).

1.2 beq Instruction (6)

The datapath modifications needed for the beq instruction are shown in Figure 1. Your implementa-
tion should have followed the semantics of the beq instruction given by the MIPS specifi-
cation. Many solutions tried to arbitrarily simplify the solution by assuming that branches didn’t take
shifted immediates, sign-extended immediates, an implied +4 to the PC, etc. Some other implemen-
tations tried to change the semantics of when a branch was supposed to be taken. Because too many
of these assumptions overly simplified the problem, they were disregarded. All implementations were
graded based on branches performing in the following manner:

if ($RA == $RB) PC = PC + 4 + (signext(imm) << 2)

Figure 1 Problem 1.b: Datapath with beq addendum.
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Points were deducted as follows:

-1 Doesn’t sign extend the immediate.

-1 Uses PC + . . . instead of PC + 4 + . . ..
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-1 Doesn’t branch using the zero flag out of the ALU. For example, some solutions added a comparator
circuit to the datapath.

-2 No use of the * bit.

-2 Branches under incorrect conditions (aside from not using the * bit).

-2 Doesn’t shift branch offset by 2 to account for byte addressing.

-2 Shifts the offset right instead of left.

-2 Shifts the branch target address after the PC = PC + 4 + . . . addition.

-2 No mux into the PC register to avoid loading the branch target into the PC register when no branch
happens.

-2 Includes the mux (mentioned directly above) but places it after the PC register and after the fork to the
+4 block. This error causes the next instruction after the branch to get loaded correctly, however,
every instruction after the next instruction will be incorrect (think about why this is the case!).

-2 No adder to add the offset to the current PC (loads the PC register with the offset directly).

1.3 beq Hex Instruction (3)

Your final task was to encode the beq instruction from Section 1.2 as a hex word (like in Section 1.1).
The instruction, along with the solution (given the datapath shown in Figure 1) is as follows:

beq $1, $2, skip =⇒ 0x0524_0002

Common mistakes/notes:

0x08A4_0002: Register swap (-0). Either ordering for RA and RB was accepted for this
problem.

0x2XXX_0002: Register swap such that you write to RF[RC] (-1).

0x4XXX_0002: Register swap such that you write to RF[RC] (-1).

Important: Since many people made assumptions in Section 1.2 that may have overly simplified
that Section, but not degraded from the difficulty of this Section, no points were deducted for an incorrect
hex word that matched your solution to Section 1.2. For example, if your solution to Section 1.2 didn’t
add +4 to the offset, your hex word may have been 0xXXXX_XXX3 or similar. No points were deducted
for this type of error, assuming your implementation matched in Section 1.2. If your solution to
Section 1.2 did not match your solution to this Section, points were deducted based on the
rubric given in Section 1.1.

2 LUT Implementation (10 + 2 = 12)

This problem was worth 12 points. 10 points were given for the LUT implementation. 2 points were
given for labeling the appropriate nodes in the circuit with the correct configurational value.

2.1 LUT Implementation (10)

A correct answer is shown in Figure 2.
The points were assigned as follows. Out of the 10 points, 4 points were allocated for the multiplexer,

4 points were allocated for the configuration shifter, and 2 points were given for having the correct overall
structure of the LUT.

+4 Shifter 2 points were given for some kind of a flip-flop structure able to load and store configuration
bits. The other 2 points were for having the correct shift register implementation.
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Figure 2 Problem 2: LUT implementation. A shift register structure on the left is used to shift in the
configuration bits and the multiplexer on the right selects between which register to output. The LUT
inputs A and B are connected to the selector inputs of that mux, which ”looks up” what the output
should be.

+4 Multiplexer 2 points were given for implementing a functionally correct multiplexer. The other 2
points were given if your implementation was optimal.

+2 Structure Given for a correct overall LUT architecture, with no extra circuitry besides just the
shifter to load in configuration inputs and the multiplexer to select the output

A common mistake was that many people implemented a functionally correct multiplexer, but was
clearly suboptimal. For this, they would only receive 2 of the 4 points allocated for the multiplexer
implementation. Another common mistake was that many people added another set of flip-flops in
addition to the configuration shifter and thus did not receive the 2 points allocated for the overall LUT
strucure.

2.2 LUT Programming (2)

The answer is marked in red in Figure 2. To program a LUT, all you need to do load the flip flops with
the output values of the truth table. So, in the case of A · B, you will need to load the flip flops with
the values 0, 1, 0, 0.

Points were assigned as follows:

+1 For labeling the diagram in some meaningful way representative of the truth table but made a
mistake somewhere

+2 For labeling the diagram correctly

Many people switched the location of the ”1” and received only 1 point for this part.
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3 LUT Mapping (6 + 6 = 12)

This problem was worth 12 points, divided equally between the mapping for cost and mapping for delay
sections.

3.1 Mapping for Cost (6)

The optimal choice here was to use 3 input LUTs. See Figure 3 for how the design was partitioned
into 3-LUTs.

Figure 3 Problem 3a: Mapping the design into 3-LUTs. Remember that each LUT only has 1 output.
So, the blocks with 3 outputs take 3 3-LUTs to map.

We can see that it takes a total of 8 3-LUTs to implement this design. The cost of each 3-LUT is
23 + 3 = 11. The total cost of this then is just 8 · 11 = 64.

Points were assigned as follows:

+3 For mapping the design into 3-LUTs correctly

+3 For calculating the total cost correctly

3.2 Mapping for Delay (6)

The optimal choice here was to use 5 input LUTs. See Figure 4 for how the design was partitioned
into 5-LUTs.

Figure 4 Problem 3b: Mapping the design into 5-LUTs
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We can see that the critical path through our design is from inputs x, b0, a0, b1, or a1 to the
output y, with a delay of two 5-LUTs. Each 5-LUT has a delay of 5, so the total delay is just 5 · 2 = 10.

Points were assigned as follows:

+3 For mapping the design into 5-LUTs correctly

+3 For calculating the total delay correctly

4 Pipelining (12)

The problem called for the minimization of (ClockPeriod ∗ NumberOfF lip − Flops). Consider first
how to reduce the clock period to a minimum. Injecting a flip-flop between each gate clearly provides
the shortest critical path (One AND gate, surrounded by flip-flops).

Figure 5 Problem 4: Minimal Critical Path.
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To compute the maximum clock period given the arrangement of flip-flops described above, we must
consider the given timing characteristics of the system: clock to Q delay, AND gate delay, and
cenbflip-flop setup time. Clearly, given the critical path described above, our clock period is limited
by the sum of clock to Q delay, a single AND gate delay, and the cenbflip-flop setup time. The
minimum clock period achievable via pipelining is thus 3 units of time.

This arrangement, however, comes at a cost of a large number of added flip flops. In fact, the total
cost of the system is 31 flip-flops, resuling in a high flip-flop count and clock period product (93).

We can lengthen the critical path to reduce the number of flip-flops required to pipeline the system.
Consider a the addition of 4 flip-flops throught the middle column of the cirucit.

Figure 6 Problem 4: Correct Critical Path.
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This pipeline has a critical path of two levels of AND gates, surrounded by flip-flops. The clock
period must be increased to 4 units of time, but the overhead in flip flop count is reduced. Only 21
flip-flops are needed, reducing the product of the flip-flop count and clock period to 84.

It can be easily shown that a longer critical path results in an increase in the product goal of
optimization. The solution is given below:

Clock Period [4]
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Figure 7 Problem 4: Solution.
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Flip Flop Cost [21]

A solution could earn up to a maximum of 12 points.

+3 Clock Period reflects the placement of flip-flops on the diagram.

+3 Clock Period is correct (4).

+2 Clock Period is incorrect only due to visible arithmetic error.

+3 The diagram clearly shows the addition of 4 flip flops to the diagram, all in correct locations.

+3 Flip-flop cost is correct (21).

+2 Flip-flop cost is incorrect only due to visible arithmetic error.

5 Memory Cascade (12)

The problem calls for the construction of a 3K x 2 single-port memory using gates and 1K x 1 blocks.
The problem allows the use of flip-flops, but these primitives are not necesary for the task at hand.

Hierarchy is a powerful tool useful in almost any design problem. Consider a lesser task of constructing
a 3K x 2 block using 3K x 1 blocks (we will go over the implementation of one next). We are making
a wide memory out of a narrow memory of equal depth. To accomplish the task, we simply write to
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both memories, read from both memories, and concatenate the result. In other words, we use the two
memories side-by-side to effecively create a wider memory. Some optimization is possible via sharing of
the address decoding logic used by the two 3K x 1 memories.

To make a 3K x 1 memory using 1K blocks, we must do a bit more work. In odred to increase the
depth of memory, we must introduce a decoder an a multiplexer. Due to the fact that any given address
corresponds to a location in one, not all, of the smaller memories, we must decode the write enable signal
based on additional address bits. Twelve address bits are needed in total to index the 3K x 1 memory.
The top 2 bits of address decode the write enable, and select the output. An optimal mux used the
decode signals to drive a tristate output from each memory block.

The problem statement guarantees that unimplemented addresses never occur. We can optimize the
decoding logic by treating the occurance of A[11:10] = 2’b11 as a don’t care. We can also share the
decoding logic used in the decoder and multiplexer for optimality.

A common error was a discontinuity in the address space caused by incorrect address decoding. In
particular, the range of (12’h800 : 12’hBFF) in (20’h00000 : 20’hFFFFF) was often not mapped
to physical memory. This discontinuity corresponds to the top address bits (2’b10) While it is true
that a 3K x 2 memory does not occupy all of the 12b address space, it is essential that the memory is
contiguous.

Due to the relative complexity of this problem, the grader may have taken notes on your exam. Just
because there’s red writing doesn’t mean you’ve done something wrong!

Figure 8 Problem 5: Composing a 3K x 2 Memory from 3K x 1 Blcoks.
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A solution could earn up to a maximum of 12 points.

+2 Low address bits (A[9:0]) are wired to each memory block.

+2 Din is wired to each memory block.

+2 A total of 6 (Six) 1K x 1 memories used to implement the 3K x 2 memory.

+2 Dout of each block is muxed correctly based on A[11:10].

+1 The multiplexer is correctly implemented with tri-state buffers for optimality. The decoding logic is
shared with the decoder.

+1 Two additional address bits are used (Address is 12 bits wide).

+2 Decoder correctly decodes the write enable signal. Solutions with a discontinuous address space lost
points.
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Figure 9 Problem 5: Implementation of a 3K x 1 Memory.
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-1 Significant lack of labeling of port names, bus bit widths, etc.

-1 Significant lack of clarity in wiring (unclear intersections of wires, etc). Solutions that posed a
significant challenge in the grading process lost both points.

6 Verilog Circuit Implementation (6+8+6=20)

This problem was worth 20 points.

6.1 Part A (6)

See Program 1.

6.2 Part B (8)

1 point for each output, and 1 point for each state’s transitions
See Figure 10.

6.3 Part C (6)

See Program 2.
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Program 1 Problem 6a

1 module foo(

2 input wire Clock ,

3 input wire IN ,

4 input wire Reset ,

5

6 output wire OUT

7 );

8

9 wire [1:0] NS;

10 reg [1:0] PS;

11

12 always@(posedge Clock ) begin

13 if (Reset) PS <= 2’b00;

14 else PS <= NS;

15 end

16

17 assign NS[0] = (~PS[0] & IN) | (~IN & PS[1]);

18 assign NS[1] = PS[1] ^ PS[0];

19 assign OUT = ~PS[1] | ~PS[0];

20

21 /*

22 2 points - declaration of wires and regs.

23 2 points - always block.

24 2 points - assign statements.

25 */

26

27 endmodule

Figure 10 State transition diagram for Probelm 6b
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Program 2 Problem 6c

1 module foo(

2 input wire Clock ,

3 input wire IN ,

4 input wire Reset ,

5

6 output wire OUT

7 );

8

9 localparam STATE_0 = 2’b00 ,

10 STATE_1 = 2’b01 ,

11 STATE_2 = 2’b10 ,

12 STATE_3 = 2’b11;

13

14 reg [1:0] NextState;

15 reg [1:0] CurrentState;

16

17 always@(posedge Clock ) begin

18 if (Reset) CurrentState <= 2’b0;

19 else CurrentState <= NextState;

20 end

21

22 always@( * ) begin

23 NextState = CurrentState;

24 case (CurrentState)

25 STATE_0: begin

26 if(IN)

27 NextState = STATE_1;

28 else

29 NextState = STATE_0;

30 end

31

32 STATE_1: begin

33 NextState = STATE_2;

34 end

35

36 STATE_2: begin

37 NextState = STATE_3;

38 end

39

40 STATE_3: begin

41 if(IN)

42 NextState = STATE_0;

43 else

44 NextState = STATE_1;

45 end

46 end

47

48 assign OUT = ~( CurrentState = STATE_3);

49

50 /*

51 2 points - wire/reg declaration and OUT assignment

52 2 points - always@(posedge Clock) block

53 2 points - always@ (*) block

54 */

55

56 endmodule
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7 Clocked Circuits (6 + 6 = 12)

This problem was worth 12 points, divided equally between the falling edge detector and the pulse
widener. For both parts of this problem, points were deducted for each error. Implementations which
had enough errors to yield negative points were given 0 (instead of a negative score).

7.1 Falling Edge Detector (6)

A correct falling edge detector is shown in Figure 11. Points were assigned as follows:

Figure 11 Problem 7.a: Falling edge detector.
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P

Clock

-1 Detects falling edges correctly but is slightly suboptimal in that it uses more gates than necessary.
Redundant logic (such as an and gate that has one of its inputs tied to 1’b1) is an example of this.

-2 Detects positive edge instead of negative edge. This amounts to an inverter on the wrong input of
the and gate.

-2 Output changes synchronously.

-2 Too many/few flip-flop delay elements. This deduction usually implied that your circuit’s output
changed synchronously (as you added an extra flip-flop at the output of the circuit). In this case,
you lost 2 points only (instead of 4).

-3 Overly complicated implementation that works correctly. For example, 3 flip-flops and enough logic
gates to do floating point calculations is too complicated!

-4 Doesn’t detect positive or negative edges but has an idea.

-6 A circuit that goes against design principles taught in class. An example of such a circuit is one
where the clock signal is sent to the D input of a flip-flop, the D input is sent to the clock input,
etc. Note: Designs that fell into this category typically suffered in the above categories as well.
As a result, because no one got less than 0 points, you may have fallen into this category and lost
the points in other categories.

7.2 Pulse Widener (6)

A correct pulse widener is shown in Figure 12. Points were deducted in the same fashion as enumerated
in Section 7.1. There were several counter/FSMs implementations that counted up until 3 cycles had
passed before returning the output to 0. In general, think simple gates and registers! It is amazing what
you can do in the realm of signal conditioning with just several gates/flip-flops. If you limit yourself to
only gates and registers, you will most likely design more optimally. As soon as you start building FSMs,
you start thinking in software (serial) terms, which has the tendancy to lead to suboptimal performance
and area consumption.
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Figure 12 Problem 7.b: Pulse widener.
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8 Short Answers (6 + 3 + 2 + 3 + 2 + 2 + 2 + 3 + 2 = 25)

8.1 Quick Answers (6)

a. False. Increasing performance does not always increase cost. For example, you can raise the
supply rails of your circuit to get it to run at a higher clock speed.

b. False. The keyword here is energy consumption per operation, which is just 1
2CV 2 and is

independent of the clock frequency.

c. The answer we are looking for here is that the general programmable interconnect is somewhat
slow. If we used it to route our clock we will run into clock skew problems.

d. The easiest way to do this problem is to just draw out the two input waveforms and the output
waveform, then see how many times the output transitions over some given period. If you assumed
that the two input signals were synchronized to each other, you will get 2 transitions per 10 ns
(period of the 100 MHz signal). If you did not make that assumption, then you will get 4 transitions
per 10 ns. We accepted both answers. You can then plug these values into our equation:

P = 1
2CV 2(2) 1

10ns = CV 2(100 · 106)

OR

P = 1
2CV 2(4) 1

10ns = 2CV 2(100 · 106)

Points were assigned as follows:

+1 part a For answering False.

+1 part b For answering False.

+1 part c For talking about clock skew.

+3 part d 1 point was awarded for writing down the 1
2CV 2αf equation down in part d. All 3 points

were given only if you arrived at one of the two final answers.

8.2 CMOS Logic (3)

To do this, we can look just at our pull-down network and write an AND function whenever we see two
transistors in series and OR whatever is in parallel. From the circuit, we can see that inputs A and C
are connected to the gates of two NMOS transistors in series with each other, meaning we have a AC
term in our final boolean expression. Similarly, we see inputs B and D going to two NMOS in series with
each other, meaning we have BD term in our final boolean expression. We then note that the part of
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the circuit responsible for AC is in parallel with the circuit responsible for BD and we arrive at a circuit
implementing AC + BD. Since we just looked at the pull down network, we must invert everything to
arrive at our final answer: AC + BD.

We also accepted other equivalents of this such as AB + AD + CB + CD.
Points were assigned as follows:

+1 For getting started in the right direction, but was not able to get much further

+2 For showing a truth table but unable to come up with a correct boolean expression

+3 For arriving at the correct boolean expression.

8.3 Negative Edge-Triggered Flip-Flop (2)

We have seen this structure many times in class; it is just a positive level-sensitive latch followed by a
negative level-sensitive latch. See Figure 13.

Figure 13 Problem 8f: Negative edge-triggered flip-flop

+2 For labeling this correctly

8.4 Mystery Flip-Flop (3)

When X = 1, the output of the flip-flop is immediately forced to 1, regardless of what the Clock is at
that instant. Thus, the signal X is used as an asynchronous preset.

+1 For choosing either the asynchronous clear or synchronous set

+3 For choosing asynchronous preset

8.5 Multiplexer mapping using LUTs (2)

The most optimal mux structure using a single 6-LUT is the 4:1 mux (4 data inputs, 2 selector inputs, 1
output). The most optimal mux structure using a single 4-LUT is the 2:1 mux (2 data inputs, 1 selector
input, 1 output). Note that you cannot build a 3:1 mux using a 4-LUT, since it has 3 data inputs and 2
selector inputs.

+1 For answering 4:1 mux for 6-LUTs

+1 For answering 2:1 mux for 4-LUTs
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8.6 Why Is Building Multiple Write Port RAM using SDP RAMs more
expensive Than Building Multiple Read Port RAM? (2)

In addition to duplicating SDP RAMs (which is required to add more read ports as well), adding more
write ports requires additional logic for the implementation of a residency table, which keeps track of
where you wrote things is also needed.

+1 For only mentioning something relatively vague such as ”more logic” or ”add a decoder”

+2 For mentioning that the additional cost is in additional logic needed to implement the residency
table

8.7 Architectural Features of FPGAs Responsible for Greater Power Con-
sumption than Custom ICs (2)

Several possible answers include:

1. Long wires, presenting extra capacitances that increase the energy per transition

2. In most designs, large portions of the FPGA are unused, but are still powered-on and leaking
current

3. Lots of hardware used for programmable logic, LUTs needs the extra hardware to implement any
function, straight wires become switch matrices, etc.

+1 For Making two very vague reasons

+1 For Making only one valid reason

+2 For Making two valid reasons

Many people put down ambiguous answers (i.e. ”FPGAs have latches”) without really mentioning
why they would cause an FPGA to consume more power. These types of answers without any additional
justification fell into the vague category and did not receive full credit.

8.8 FPGAs vs. ASICs (3)

i. FPGAs give you better time to market, since you can program it instantly whereas an ASIC chip
takes months to come back from the fabrication plant.

ii. FPGAs give you less engineering costs, since it is easier to test and debug due to its reprogrammable
nature.

iii. ASICs give you less per unit cost because it is custom-tailored for the specific purpose the chip is
designed for. FPGAs are more general and programmable, and thus contain a lot of other logic
that is unnecessary and cost more per unit. However, we also accepted the answer of ”FPGAs for
low volumes, ASICs for high volumes.”

+1 For each part

8.9 Write Your Name On Every Page (2)

Everyone got these two points, even those who missed a single page or two (I was lenient).
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