
University of California at Berkeley
College of Engineering

Department of Electrical Engineering and Computer Science

EECS150, Spring 2010

Midterm Review: Sequential Logic, Basic Combinational Logic, Verilog, Video
March 29, 2010
Brandon Myers

This sheet is meant to pack a lot on a little paper. Use a separate piece of paper for your answers.

1. Design a counter with one control input. When the input is high, the counter should sequence
through three states: 11, 01, 10 and repeat. When the input is low the counter should sequence
through the same states in the opposite order 11, 10, 01 and repeat.

(a) Implement the counter using D flip flops and whatever gates you like.

(b) Extra: Draw the state diagram and state transition table

2. Design a 4:16 decoder out of 2:4 decoders and 2-input gates.

3. Adapted from sp07-Mt1-Q3. Suppose we have the basic programmable logic block (instead of
LUTs), shown below. All the inputs In0,In1,S0,S1 can be tied to input A, input B, 0, or 1.

1

0

S1

S0

In0

In1
F

Implement each of the following logic functions using the basic building block: A, A’, A NAND
B, A NOR B, A AND B, A OR B, A XOR B, A XNOR B.

4. Write a Verilog module for a level sensitive latch, with interface In, Out, and C (”clock”). It must
have a parameter Level, which if 1 makes the latch sensitive to high and if 0 makes the latch
sensitive to low.

5. Consider the FSM with the state-transition diagram below.

1

Me

[0]

Want

[1]

Pizza

[0]

1 1

0

 1

0

0

(a) Describe the behavior of the FSM (when does it output 1?).

(b) Write a Verilog module for the FSM.

6. Video. WxH F-fps display (i.e. W pixels/line, H lines, F frames per second). Horizontal blanking
interval HB, vertical blanking interval VB, pixel clock frequency PF.
H ∗ (W/PF + HB) + V B = 1/F
This equation comes from the fact that the total time to draw a frame (1/F) is equal to the time to
draw every line (including HB at end of each line) plus VB.

7. The Bresenham Line Drawing Algorithm (without steepness/direction tests).

f u n c t i o n l i n e (x0 , x1 , y0 , y1)
i n t d e l t a x := x1 − x0
i n t d e l t a y := y1 − y0
i n t e r r o r := d e l t a x / 2
i n t y := y0
f o r x from x0 t o x1
p l o t (x , y)
e r r o r := e r r o r − d e l t a y
i f e r r o r < 0 t h e n
y := y + 1
e r r o r := e r r o r + d e l t a x

Walk through the algorithm for input (1,1) to (7,4) (i.e. (x0,x1,y0,y1)=(1,7,1,4)). Listing the pixel
locations that will be drawn.

2

