Today

- CAD Flow Extension
- Verilog
- Structural Verilog
- Administrative Info
- Lab #2: The Structural Accumulator
 - Lab2 circuit
 - Lab2 testing
 - Analysis of resource usage and timing

CAD Flow Extension (1)

- This week
 1. FPGA Editor
 2. BitGen
 3. iMPACT

- Next week
 1. Design Entry
 2. PPR
 a. Design Partitioning
 3. Place and Route
 4. See "This week" section
Verilog (1)

- What’s an HDL?
 - Textual Description of a Circuit
 - Human and Machine Readable
 - Hierarchical
 - Meaningful Naming
- NOT A PROGRAM
 - Describe what the circuit IS
 - Not what it DOES

Verilog (2)

Digital Design Productivity, in Gates/Week

<table>
<thead>
<tr>
<th></th>
<th>Behavioral HDL</th>
<th>RTL HDL</th>
<th>Gates</th>
<th>Transistors</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>2K-10K</td>
<td>1K-2K</td>
<td>100-200</td>
<td>10-20</td>
</tr>
</tbody>
</table>

Source: DataQuest
Structural Verilog (1)

Verilog Subsets
- **Structural:** primitive gates + modules
 - Gate level design
 - You will ONLY use Structural Verilog in this lab
- **Dataflow:** compact boolean expressions
 - More compact expression of structural Verilog
- **Behavioral:** abstract syntax
 - Timing nuances
 - You will see this starting next lab

Structural Verilog (2)

Structural 2:1 Mux example

Key
- Module wrapper
- Input/Output wire declarations
- Wire declarations
- Gates

```
module Mux21(A, B, S, Out);
input wire A, B, S;
output wire Out;
wire notS, BTemp, ATemp;
not invertS(notS, S);
and andATemp(ATemp, A, notS);
and andBTemp(BTemp, B, S);
buf or_result(Out, ATemp, BTemp);
endmodule
```
Administrative Info

- Homework submission policy
- Lab lecture conflicts
- Card key access
- Check-off procedure
- Questions?
Lab #2 (3)
- **ALU**
 - We provide the Verilog for N-bit version
 - You must implement the 1-bit ALU model
 - **Must** support our ALUOp
 - Supports: +, -, &, |, ~, pass-through (7 operations)

Lab #2 (4)
- **FDRSE**
 - Xilinx primitive
 - D-type flip-flop
 - Instantiated like a simple module
 - Specific Set/Reset characteristics
 - "Read all about it!" → virtex5_hdl.pdf
 - It's part of the PreLab!

Lab #2 (5)
- **Accumulator**
 - We give you port specification
 - You will implement the rest of the circuit
 - Use code examples
 - Mux21: Structural Verilog (gates, wires)
 - ALU: **generate** statements
 - Abide by our interfaces!
Lab #2 (6)

- HW test harness
 - TA Accumulator vs. your Accumulator
 - Check all input combinations
 - Signal error and show address if mismatch

```
Circuit under Test ("CUT")
  ALUOp
  3b
  TA Accumulator
  Counter
  Clock
  ==
  Enable counter?
  Error
  Error
  Address
```

Lab #2 (7)

- Circuit Analysis
 - Resource Usage
 - Accumulator(width) = how many LUTs / SLICEs?
 - generate allows you to experiment
 - Timing
 - Locate nets \(\rightarrow\) "Technology Schematic"
 - Calculate delay on the nets \(\rightarrow\) FPGA Editor

Lab #2 (8)

- PreLab
 - Read specified material
 - **Write all of your Verilog**
 - Lab starts at debugging phase
 - Assumption:
 - you have written all of your Verilog ahead of time