Structural Verilog

EECS150 Spring2009 - Lab Lecture #2

Chris Fletcher Slides designed by Chris Fletcher

Slides: "Verilog (1)", "Verilog (2)" and "CAD + Verilog" by Greg Gibeling

1/30/2009

EECS150 Lab Lecture #2

- CAD Flow Extension
- Verilog
- Structural Verilog
- Administrative Info
- Lab #2: The Structural Accumulator
 - Lab2 circuit
 - Lab2 testing
 - Analysis of resource usage and timing

1/30/2009

EECS150 Lab Lecture #2

1/30/2009

EECS150 Lab Lecture #2

3

1

Verilog (1)
What's an HDL?
Textual Description of a Circuit
Human and Machine Readable
Hierarchical
Meaningful Naming
NOT A PROGRAM
Describe what the circuit IS

Not what it DOES

1/30/2009

EECS150 Lab Lecture #2

- Verilog Subsets
 - Structural: primitive gates + modules
 - Gate level design
 - You will ONLY use Structural Verilog in this lab

8

- Dataflow: compact boolean expressions
 - More compact expression of structural Verilog
- Behavioral: abstract syntax
 - Timing nuances
 - You will see this starting next lab

1/30/2009

EECS150 Lab Lecture #2

Administrative Info

- Homework submission policy
- Lab lecture conflicts
- Card key access
- Check-off procedure
- Questions?

1/30/2009 EECS150 Lab Lecture #2

- Build a structural Accumulator
 - Work with a real design
 - Write parameterized Verilog
- Debugging
 - Synplicity RTL/Technology schematic

EECS150 Lab Lecture #2

- Analysis
 - Resource consumption
 - Timing

1/30/2009

1/30/2009

Lab #2 (2)

- Structural Accumulator
 - ALU
 - 'FDRSE' Xilinx primitive flip-flop

12

10

EECS150 Lab Lecture #2

Lab #2 (5)

- Accumulator
 - We give you port specification
 - You will implement the rest of the circuit
- Use code examples
 - Mux21: Structural Verilog (gates, wires)
 - ALU: generate statements
- Abide by our interfaces!

1/30/2009

15

HW test harness

- TA Accumulator vs. your Accumulator
- Check all input combinations
- Signal error and show address if mismatch

1/30/2009

EECS150 Lab Lecture #2

Circuit Analysis

- Resource Usage
 - Accumulator(width) = how many LUTs / SLICEs?
 - generate allows you to experiment
- Timing
 - Locate nets → "Technology Schematic"
 - Calculate delay on the nets → **FPGA Editor**

1/30/2009

EECS150 Lab Lecture #2

- PreLab
 - Read specified material
 - Write all of your Verilog
- Lab starts at debugging phase
 - Assumption:
 - you have written all of your Verilog ahead of time

1/30/2009

18