EECS150 Spring 2008 Checkpoint 2

UNIVERSITY OF CALIFORNIA AT BERKELEY
COLLEGE OFENGINEERING
DEPARTMENT OFELECTRICAL ENGINEERING AND COMPUTERSCIENCE

Checkpoint 2
Local Video System

1.0 Motivation
This checkpoint serves three purposes:
1. To acquaint you with the arbitration of SDRAM readfe requests
2. To give you experience piecing together sub-modtdesccomplish a
larger goal.
3. To get local video working, which is a major compoh of your final
project.

This will be the first project checkpoint that régs a significant about of design to be
done by you — this checkpoint is, for the most,pgety open-ended. Just make it work!

-Good Luck!

“B ECAUSE YOU WILL BE KEEPING AND RELYING ON THIS CODEFOR MONTHS, IT
WILL ACTUALLY SAVE YOU MANY STRESSFUL HOURS TO ENSRE IT WORKS WELL NOW
RATHER THAN WHEN YOU ARE ABOUT TO FINISH THE PROJEQ”

2.0 Introduction

In this module you will be building the “glue” thatill hold together the entire
video system. You have already built the SDRAM oaligr, now you just need to create
a reliable interface such that several data-hurggmyponents can talk to it without
conflicts.

Your goals for this checkpoint will be:

1. To design and implement an arbitration schemehi@iSDRAM control.
a. You will need to be able to handle simultaneousl reguests and
write requests.
2. To implement local video
a. To capture data from the provided video decoder taedl it
reliably into the video encoder to display locale®
b. You will need to modify your address counter toreotly access
the data needed by the video encoder and to white data
correctly for your video decoder.
3. To establish a reliable interface between companenth different data
rates

ucCB 1 2008

EECS150 Spring 2008 Checkpoint 2

a. Using FIFOs as buffers, create an interface to steandata
between the SDRAM arbiter and various connectedpoorants.
b. You must ensure that the FIFO does not overflownaterflow

2.1 Video Format

The video format for the video encoder is the IT36 &nd the format of the video
decoder is the ITU 601. As far as this checkposttoncerned, the only difference
between the two is the number of active video lifmsre on this later). Both formats are
based on the luminance and chrominance used wigele instead of the standard RGB
format found in computer monitors.

The video data is in 32-bit words, each word regméag a pair of pixels side-by-
side on the screen. There are two 8-bit luminancébfightness”) values per pixel pair:
one for the left pixel and one for the right pix€here is also an 8-bit blue chrominance
value and an 8-bit red chrominance value contaitimegcolor information of the pixel
pair, making a total of 32 bits per pixel pair. Fhiesults in the use dhe same
chrominance for each pixel pair but different luminance values for each individual
pixel. The reason for this is that your eyes are monsigee to brightness (luma) rather
than color (chroma).

Y Right Y Left
8 bits 8 bits

32 24 16 8 0
Figure 1: Pixel Pair Representation (Y is luminariet and right is the pixel in the pair)

These pixel pairs are arranged in a row/column &birike a square matrix that make up
the screen, with each row corresponding to a roactfe video.

The provided video encoder takes in this exact &rma its 32-bitDIn input. If you
wish to read more about the video format, readspiexification about the video encoder
from Spring 2007.

2.2 Local Video in SDRAM

Of course the point of this checkpoint is to steideo in SDRAM. This section
details the format of the video data in memory.

Since the video data is organized into 32bit wotllis, motivated the design of a
32-bit wide SDRAM interface in Checkpoint 1. Thganization of pixels into words and
words into bursts is shown in figure 2 below.

ucCB 2 2008

EECS150 Spring 2008 Checkpoint 2

1 Pair (32b)

~
1 Burst

(8x 32bits)

J

i
’-'I."

‘il.

Figure 2: Video Memory Organization

This simply shows the organization of the pixelshim a burst. In addition, we
must decide on a format for how to organize thestsurThe scheme we will use is the
following:

RowAddress = {pad with 0’s, PixelRow}
ColumnAddress = {BurstColumn, 3'h0}
BankAddress = 2'b00

This addressing scheme should be pretty straighial; the row address is the
row of active video you are accessing and the columaddress is what pixel pair to
access within that row If this sounds confusing, just remember thayall are doing is
copying the contents of a square matrix ([pixel Jfpwelpair column]) into a bigger
square matrix ([row address][column address]).

Since the ITU 601 standard has only 487 lines @iv@w/ideo and the ITU 656
standard has only 487 has 507 lines of active vigea mustpad the top of the row
address with 4*1’b0s to make it total a 13bit for a row address.

Thebank address is fixed at 2’b0OGor local video.

Thecolumn address is based on the video pixel pair eohn. Notice that in this
case thaBurstColumn indicates which BURST you wish to access. Bh#® on the
right ensures that you will alwaysad from a column address that is a multiple of 8
since you read out 8 pixel pairs per read/writelest)

ucCB 3 2008

EECS150 Spring 2008 Checkpoint 2

By dividing the SDRAM address into row and column alog the same
boundaries as the video row and columnwe havesimplified debugging so that you
can easily see which pixels are being read andenrdt any time.

2.3 Asynchronicity

Unlike everything you have done in the past lal$ @reckpoints, this checkpoint
will require 2 different clock signals. The cameyzerates on its own independent clock.
If you are curious about the differences betweertielock signals you can analyze them
using the oscilloscope. What's important for thieckpoint, and what will be extremely
important in later checkpoints, is that you underdtthe limitations of working with 2
clocks. You cannot have signals generated by statehines that run off of different
clocks communicate directly with each other. Fds ttheckpoint, you will cross this
boundary using an asynchronous FIFO. This moduke mormal FIFO, except that its
reads and writes operate on different clocks. Yol wge this asynchronous FIFO to
communicate to the video decoder.

2.41TU 654 vs ITU 601

The video encoder uses the ITU 656 Video StandHalvever, the camera
operates under the ITU 601 Video Standard. Thesmiffce between the 2 standards is
that thelTU 656 standard has 487 line®f active video, whilghe ITU 601 standard
has 507 linesThe way to get around this is to not display élk&ra lines of valid active
video written by the video decoder by simply inmgtthem to the video encoder during
the lines of vertical blanking when data input does matterBoth standards have 720
active pixels (360 pixel pairs) per line.

3.0 Prelab

Please make sure to complete the prelab beforatyend your lab sectionYou
will not be able to finish this checkpoint in 3hrs!
Read this handout thoroughly
a. Pay particular attention to sectiod and 4 as it describes
background information that you will need to know
2. Examine the Verilog provided for this checkpoint
a. The code provided is heavily commented, make us of
3. Before you begin to design anything or to write aonge, think about the
project at hand.
4. Start your design ahead of time
a. Begin withschematicsandbubble-and-arc diagrams
b. Come prepared for your design review

ucCB 4 2008

Checkpoint 2

EECS150 Spring 2008

4.0 Lab Procedure

4.1 Local Video Overview

Local Video Subsystem

: WEData Ot
7 VEDatavalid
-

WEReadRequest

F _ VE Processar _
T

Logic

FIFD ‘Y dataCount —s COMbinational

Enatda
Countar

Ireguest

Address Counter

Wideo Encoder

‘WO Dataln
SORAM Confroles YO DataRequest
w
dafa
2t 4 W
CMD | address
| 4 WD Dztaln
._ SORAM Arbiter - WDDataRequest -
| - o - WDWrite Request 7
_ WO Fracessor _
I ¥
Cornbinational dataCoun FIFQ
| Logic
VERam&ddress VORamAddress
Enabile
Couribor
+ Crataln
Addrass Counlar VALID
— Vidao Dacoder 7
Carmarg

2008

ucCB

EECS150 Spring 2008 Checkpoint 2

4.2 SDRAMArbiter.v

The arbiter’s job is to toggle control of the SDRABbntroller. It will often be the case
that the Video Encoder needs data at the samethian¢he Video Decoder needs to write
data. The job of your arbiter is to decide who getstrol and when. The implementation
is completely up to you and the suggested solugsosimply asuggestion, feel free to
modify it in any way.

Suggested SDRAM Arbiter Operation:

1. While nothing interesting is happening the arbgkould sit in some kind of an
idle state.

2. If a module needs a read or a write it assertsaalRériteRequest signal.

3. If the arbiter decides to give attention and seinemodule’s Read/Write request,
it must change to a “Serving” state and tell theR&M controller to do the read
or write. The arbiter then needs to handle thentgncommand signal assignment,
and passing of data to the SDRAM controller.

o In the case of a WriteRequest, the arbiter muséraghe appropriate
“DataRequest” signal to read from that module’s®IF

o In the case of a ReadRequest, the arbiter musttatbse appropriate
“DataValid” signal to write into that module’s FIFO

o If both modules requires attention, the arbiter mal®wose a module to
serve and a priority of who to serve must be erstadd

4. When the request is done, the arbiter moves tadibestate and waits for a new
request

UPDATE: You will need a negative edge triggered Resgter at the output of the
RAM_DQ line from the SDRAM! (similar to what you had in checkpoint 1)

VEReadRequest /Id:\ VDWriteRequest

Serving
, VE Processor

Serving
Done Done , VD Processor

Figure 3: SDRAMArbiter State Machine

ucCB 6 2008

EECS150 Spring 2008

Checkpoint 2

A suggested basic port specification is below. Hmveyou should read the included

verilog file and are free to deviate from the sigigé design.

Signal Width | Dir |Description

Clock 1 I Clock

Reset 1 I Reset

MemReady 1 I Ready Signal from the SDRAMControl
SDRAM_DQ 32 I/O | SDRAM DQ Line

ColumnAddress 9 O Just what it sounds like

RowAddress 13 O Just what it sounds like

BankAddress 2 O Just what it sounds like

MemDone 1 I Done signal from the SDRAMControl
RAMReadRequest 1 O Request a read from the SDRAMControl
RAMWriteRequest 1 @) Request a write from the SDRAMControl
RAMReadValid 1 I Valid Signal

VEDataOut 32 O Output to the VE Processor

VEAddress 24 I Address from the VE Processor
VEReadRequest 1 I VE Processor requests attention
VEDataValid 1 O FIFO write Enable for the VE Processor
VDDataln 32 I Received data from the VD Processor
VDAddress 24 I Address from the VD Processor
VDWriteRequest 1 I VD Processor requests attention
VDDataRequest 1 @) FIFO read Enable for the VD Processor

Table 1: Port Specification for SDRAMArbiter.v

4. 3 fifo_sync32d.v

The sync FIFO is a simple, two-interface moduley yerite into one and read
from the other. The way this module assists ibuffer your data and allow the Video
Encoder and the SDRAM to run at different rates.

Signal Width | Dir |Description
Clk 1 I Clock
Sinit 1 I Reset, will empty the FIFO
Din 32 I Data input bus
Wr_en 1 I Write the value on din into the FIFO on the clock
Rd_en 1 I Read enable, Dout will be valid after next risgupe
Dout 32 O | Data output bus, valid next cycle after rd_en
Full 1 O | Indicates that the FIFO is currently full
Empty 1 O | Indicates that the FIFO is currently empty
data_count 2 O | Indicates how many words are in the FIFO
2’b00 means 0-Y4 full
2'b01 means %2 - % full
2'b10 means ¥2- ¥ full
2'bl1 means % -1 full

Table 2: Port Specification for fifo_sync32.v

ucCB 7 2008

EECS150 Spring 2008 Checkpoint 2

4.4 fifo_async.v

The operation of the asynchronous FIFO is exabtiysame as the one specified above.
However, you should notice that the read and weiteks are different. This doesn’t
change the basic operation of the FIFO. Keep indntivat you need to make sure that
your FIFO doesn’t overflow or underflow by keepimgck of the data_count.

NOTE: The data_count on the asynchronous is a woudt (1 word is 32 bits, 8 words
is 1 burst). You should attempt write as soon ashave a full-burst worth of data in the
FIFO.

ALSO NOTE: Because you have 2 different clocks, ymve 2 different data count
signals. Each one is asserted on the positive eflije respective clock. Make sure you
use the correct data_count signal.

4.5 1/O Processors

The following 2 modules are up to you to designe tesign is completely open-ended —
all that we care about it is that they work.

These modules should be very simple. They're onlplp is to keep track of when a
read or a write is needed and toggle the correctgnals to make it happen. Don’t
make them more complicated than they need to be.

UPDATE: The video encoder has been changed to actdpe same number of lines
as the video decoder (it just wont display them). fiis should make it so that you can
use the same AddressCounter (counting from 0-506h iyour VEProcessor and
VDProcessor. You no longer have to worry about AN\differences with the formats.

4.5.1 VEProcessor.v

The purposes of this module are:
1. To determine the address of the current burstiiéeatls to be read in order to feed
the correct data into the video encoder.
2. To determine when a RAM read is needed. HINT: Tisisdone using the
“data_count” signals from the FIFO.
3. To handle read/write signals for the FIFO that eiliffer the data between the
SDRAM and the video encoder.

We were able to build this module using only theddess Counter, FIFO, and very little
combinational logic.

4.5.2 VDProcessor.v

ucCB 8 2008

EECS150 Spring 2008 Checkpoint 2

The purposes of this module are:
1. To determine the address of the current burstribatls to be written in order to
allow the VE Processor to access the correct data.
2. To determine when a RAM write is needed. HINT: Tiesdone using the
“data_count” signals from the FIFO.
3. To handle read/write signals for the FIFO that eiliffer the data between the
SDRAM and the video decoder.

This module is also a very module built similartythe VEProcessor. Once again, we
were able to build this module with the Address @ery FIFO, and some combinational
logic.

4.6 VideoEncoder.v

This module has been provided for you via the blagk. It features a 32-bit input DIn
for you to put in valid pixel pair data, a InRequsegnal to tell you that a new 32-bit
input must be placed at Db the next cycle, and InRequestLine/InRequestPair signals
to tell you what pixel pair it needs. You do noeddo worry about the other signals, as
they are used by it to connect to the on-boardovielecoder. Basically to sum up its 1/O
behavior, when InRequest is asserted, you must give it a newixel pair
(corresponding to the line and row numbers indicatd in InRequestLine and
InRequestPair) after the next rising edge.

UPDATE: The video encoder has been changed to actdpe same number of lines
as the video decoder (it just wont display them). fiis should make it so that you can
use the same AddressCounter (counting from 0-506 iyour VEProcessor and
VDProcessor. You no longer have to worry about AN\differences with the formats.

Si gnal Width |Dir |Description

VE_*Hxkdnx 1-10 I/O | Signals to the on-board video encoder, yow'td
need to worry about these

CycleCount 7 @) You don’t need to worry about this

DisableSCLOp 1 O You don’t need to worry about this

SDataEnable 1 o] You don’t need to worry about this

Sdata 1 @) You don’t need to worry about this

Clock 1 I The Clock signal

Reset 1 I The Reset signal

Din 32 I Requested pixel pair, Y\8Cpg

InRequest 1 O Request signal, is high for one out four cycléemy
requesting active video. DIn needs to be validrafte
the riding edge where this is 1'b1.

InRequestLine 9 O The line from which you are requesting video data

InRequestPair 9 O | The pair of pixels which you are requesting N®tic
that this address should go up by one for eachit3R-b
pixel pair.

ucCB 9 2008

EECS150 Spring 2008 Checkpoint 2

4. 6 VideoDecoder.v

This module is provided for you in verilog and @mmented extensively. You should be
able to determine how it works by examining theecadd applying your understanding
of your video encoder. This module is basicallyt jm$ackwards version of checkpoint
#1. It, however, does not have InRequestPair aReéduestLine signals, you will need to
keep track how where/when to write to the RAM yelits

Below is an explanation of the relevant signals. Waee left all of the wiring intact from
our implementation of this checkpoint. You shoutldble to determine everything you
need for a combination of an analysis of the ctuewiring, and the table below.

Signal Width | Dir |Description

EN 1 I This is the enable signal, we use the memready
signal for the SDRAM Control for this purpose.

SEF 1 O | High at the start of an even field

SOF 1 O | High at the start of an odd field

EAV 1 O | High at the end of active video

SAV 1 O | High at the start of active video

VALID 1 O | High When the data on the DATA_OUT line |is
valid

DATA OUT |32 O | The pixel pair currently being output.

Hints

* The decoder will output video signals in the opfdirection as the Video
Encoder did. i.e. the signals will bg € Cr Y.

» The SDRAM takes a while to initialize (100us) so yoshould keep the Video
Encoder and the Arbiter’s reset signal high duringthis time (should already
be done for you in the provided code)

* The main modules you must write for this checkpairg the arbiter and the two
video processors.

* THINK about the problem before jumping into designor coding.

* Remember that the data_count on the asynchronéi lin units of words and
there are separate signals that are valid for elack.

ucCB 10 2008

