EECS150 Spring 2008 Checkpoint 2.5

UNIVERSITY OF CALIFORNIA AT BERKELEY
COLLEGE OFENGINEERING
DEPARTMENT OFELECTRICAL ENGINEERING AND COMPUTERSCIENCE

CHECKPOINT 2.5

FOUR PORT ARBITER AND USERINTERFACE

1.0MOTIVATION

Please note that this checkpoint serves as an staryyon Checkpoint 4. It will be worth 5%
extra credit on Checkpoint 3 if turned in alonghn@heckpoint 3.

In this Checkpoint you will add onto your 2-porbiaer from Checkpoint 2 to add 2 additional
ports for wireless sending and receiving. In addjtyou will add on additional processors to
your previous 2 ports to create an additional VDcpssor that subsamples the input frame and
an additional VE processor for displaying the losabsampled frame and the remote received
frame in the 2 top corners of the screen. By & @ this checkpoint, you will have a good
portion of Checkpoint 4 completed, leaving you tmcuds on compression and protocol
implementation in the last 2 weeks of the project.

2.0 INTRODUCTION

2.1 Four Port Arbitration

You will need to modify your FSM from Checkpointt@ account for any combination of 4
possible request signals from each of the portsu Will need to prioritize these signals in some
fashion. Much like with the 2 ports you createcineckpoint 2, you will need to create address
counters and FIFOs at each port to buffer the floptpput and ensure that requests are made in
the necessary order. The diagram below showsaimpanents needed for this checkpoint.

Té‘j&*‘* SDRAM
Wireless Controller

cP3 cpa | | Rec. Proc. ’

]

Wireless DCT/ Wirel | SDRAM Arbiter
Channel Huffman = e <—!—‘

T' Send Proc. 1\ |
% i v W

VD Proc. Subsample VE Proc. PIP Proc.

.
v
Camera Display __/
e |

UC Berkeley 1

EECS150 Spring 2008 Checkpoint 2.5

2.1.1 Subsampling Processor

The Subsampling processor is responsible for suplsagna full frame of active video and
storing its contents into SDRAM. Because of theitklh bandwidth imposed by the wireless
transceiver, we do not want to be constantly updatbur subsampled frame while the
transceiver is in the process of sending that framteThus, we should only begin sampling
our next frame when the wireless is done queuing ugnd sending the current frame.

UEon the receipt of the WirelessReady signal, thies@mpling processor will subsample every
4" pixel pair from every % line of the video decoder data. In order for youobtain a
subsampled frame of 160 pixels (80 pairs) by 188dj you will need to sample an area the size
of 640 pixels (320 pairs) by 480 lines from theeoddecoder. However, because of even and
odd lines, this process is actually a little bitrm@omplicatedinstead of sampling every %

line from lines 1-480, you should sample every™line from lines 1-240 and lines 255-494

Additionally, we will be reducing the pixel qualityp 8 bits of grayscale per pixel pair by
extracting the averaged luminance value of evéhpigel pair.Each pixel pair you write to
SDRAM will have the same luminance value for bothhe left and the right pixels. You
should also fill the CR and CB values of the pipair with 8'h80 (instead of 8'h00) in order to
display grayscale instead of a greenish color. @hpesel pairs make up your subsampled frame
and will be stored in a separate bank in SDRAM tiah the Wireless Sending Processor and
PIP processor will read from.

Video Decoder Qutput

]
]
N

Pixel Pair

:}:‘:LP“"‘“ [v [enso [y [snso |

UC Berkeley 2

EECS150 Spring 2008 Checkpoint 2.5

2.1.2 Wireless Receiving Processor
This module is responsible for writing the dataereed over the wireless channel to SDRAM in

the correct order.

Wireless packets will arrive as 8x8 squares (usethb DCT / Inverse DCT). In order to have

cross compatible solutions in Checkpoint 4, you wded to write the data to SDRAM in the

order as follows: first write line 1, pairs 1-8|ltaved by line 2 pairs 1-8, all the way to line 8

pairs 1-8. It then begins the next 8x8 block witlel9, pairs 1-8 to line 16, pairs 1-8. Once it
reaches line 120, it begins the next column of kdaat line 1, pairs 9-16, then line 2, pairs 9-16
and etc. The subsampled frame will contain 160Ipif&0 pairs) by 120 lines. This corresponds
to 150 8x8 blocks starting with the top left coraed terminating in the bottom right corner. It
will write to its own bank of SDRAM from which thHelP processor will read.

80 Pixel Pairs

[+ 8 Pixel Pairs—|

———

|

J
l— 8Lines —»‘

Subsampled Image

120 Lines

2.1.3 Wireless Sending Processor
Wireless data will also be sent in the same ordscidbed in section 2.1.2. The same address

counter can be used for both modules. It will plaita from the bank the Subsampling processor
writes to. This module is also responsible foringlithe subsampler that it has just finished

sending out a frame.

2.1.4 PIP Processor

The Picture in Picture processor will need to baealdto handle displaying of the small frames to
be displayed in the top corners of the screenwillt decide what to display based on the
InRequest, InRequestLine and InRequestPair outdutse video encoder.

Note: When the InRequest signal is not assertedJrtRequestLine and InRequestPair signals
could be anything.

UC Berkeley 3

EECS150 Spring 2008 Checkpoint 2.5

2.2 User Interface and Display

You will have to modify the VE Processor port oé tarbiter as shown above to generate data for
the Video Encoder that displays the 2 smaller frainethe corners of the screen. In addition
you must display the following information:

- Wireless channel number (4 bit)

- Source address (4 bits)

- Destination address (4 bits)

- Operation mode (1 bit - Master / Slave)

- Anything else you think may be useful (ie framesgexond)

If you are unsure how these values will be gendrademply make them input ports with the
specified number of bits to your graphics / Ul mieduThe screen should look thus something
like this at the end of this checkpoint:

= | Local Subsampled Remoete Received
& | Frame being Sent Subsampled
Frame
80 pairs

Display something cool with
your text in this area

Make sure that your method for writing text is flexible as well as reliable, as you will likely
be writing lots of text in Checkpoint 4.

2.2.1 Character Display

A character ROM has been given to you in CharROMIfie module accepts an 8-bit input as
an ASCII character code and outputs an 8x8 bitNDattrix which can be mapped to a 8 pair x 16
line block of the screen to draw the desired characlt is up to you to design the interface to
this module and use it to draw the desired textheoscreen. An SRAM module will also be
provided in case you want to use it. Feel freeh@nge its size.

2.2.2 Double Buffering

Because of the slow transmission rate of the weslgou may not want to see the received
frame as it is being updated and only update theived frame after it is completely written.

You can do this by having the wireless receive aidgéo encoder read/write from alternating
places in memory.

UC Berkeley 4

EECS150 Spring 2008 Checkpoint 2.5

3.0 PRELAB

1. Examine the Verilog skeleton provided for this dtpint.
2. Start your design ahead of time.
a. Begin with schematics and bubble-and-arc diagrams.
b. Come prepared for your design review. Make surewwderstand how to
use the Character ROM and how to draw to differegtons of the screen.
c. The entire checkpoint will require significant degiging. Make sure to at
least write a draft of it ahead of time

4.0 LAB PROCEDURE

The best approach to designing a complex digitalesy is to abstract away details into many
layers of operation. This checkpoint will involvdat of design on your own part and thus it is
important that you figure out a clean way to domgjsi before you begiWriting “quick-fixes”

to make your project work will cause you major prodems in the future! This “mini-
checkpoint” will be significantly harder than Chedints 1 and 2 combined, so don'’t put it off
until checkpoint 4.

The following tables ar6&UGGESTIONS for input/output port specifications of a partiaula
implementation of the checkpoint

4.1 Graphics.v (modified from CP2)

Signal | Width | Dir. | Description
Video Encoder

InRequest 1 I Pulse to request from Video Encodettfemext piece of data
InRequestPair 9 I Pair requested from Video Encodeuédly used unlike in CP2)
InRequestLine 9 I Line requested from Video Encodtso(ased in this CP)
Dataln 32 ©) The data to send to the Video Encoder
Video Decoder

Valid 1 I Indicates the Video Decoder DataOut sigres kalid data
Line 9 I Indicates the line number of the data confiogn the decoder
Pair 9 I Pair number from the decoder
DataOut 32 I The data coming from the video decoder

Wireless Out Processor
DCTRequest 1 I Request from checkpoint 4 for the peate of data.
WirelessProcOut| 7 O The next 7-bit sample to be setite DCT
BlockOutindex 9 0 Index of the 8x8 block currently mgisent
BlockOutRow 3 ©) The row number within the 8x8 block.
BlockOutCol 3 @) The column number within the 8x8 block

Wireless In Processor
DCTValid 1 I Indicates that the data from the DCT mieds valid.
BlockinRow 3 I The row within the 8x8 block from thedD»
BlockInCol 3 I The column within the 8x8 block fromefDCT
BlockIinindex 9 I The index of the 8x8 block from th&CD
WirelessProcin 7 I The data coming in from the DCT.

UC Berkeley 5

EECS150 Spring 2008 Checkpoint 2.5

5.0 HNTS AND TIPS

1. Debug your address counters in Modelsim extensivetyder to ensure its functionality.
Much of this checkpoint involves designing countéis work properly

2. As you may have learned from Checkpoint 2, lookahgamera video data on Chipscope
is kind of pointless. Try to come up with “dummyipiuts to feed into your subsampler
that will help you debug

3. Depending on your implementation of the SDRAM abiand the various processors,
you may exceed your SDRAM bandwidifhus, you will NOT be required to display
uncompressed full resolution local video for this oany further checkpoints.

4. Itis highly recommended that you test by looping wireless sending processor directly
to the wireless receiving processor. You should &g to artificially slow down frame
rates to see how your system behaves under thositioos.

5. As mentioned, many parts of this checkpoint areiakt part of checkpoint 4. Some
details may be changed in the final project speaiion for checkpoint 4.

UC Berkeley 6

