
EECS150 Spring 2008 Checkpoint 1

UCB 1 2008

UNIVERSITY OF CALIFORNIA AT BERKELEY

COLLEGE OF ENGINEERING

DEPARTMENT OF ELECTRICAL ENGINEERING AND COMPUTER SCIENCE

Checkpoint 1
SDRAM

Introduction
Welcome to Checkpoint #1. Read this document thoroughly and get started early. This
checkpoint is meant to ease your transition into this semester’s project; however, it would
be a mistake to take it lightly. Initial Advice: When we tell you that you need to read
the Datasheets – READ THEM!

1.0 Motivation
This checkpoint serves three purposes:

1. Familiarize you with working with SDRAM
2. Build a simple SDRAM interface for later use in the project
3. Give you practice on reading specification sheets

It is important to be familiar with SDRAM as it is an increasingly common
component in many designs. In addition to providing large, cheap storage for projects
like those in EECS150, SDRAM forms the heart of every computer.

Most digital designs are only as useful as the amount of storage they contain.
Even streaming Digital Signal Processing (DSP) applications, the canonical example of a
stateless or memory-less design often require significant amounts of RAM for
computations like matrix transposes, FFT and delays.

Because it is so expensive to build large or fast SRAM, DRAM has become
nearly ubiquitous. The largest hurdle to using DRAM is that it must be “refreshed”
periodically in order to maintain its contents. The second largest problem with any kind
of RAM is often that it is asynchronous, making it difficult to interface with. Both of
these are somewhat mitigated by using Synchronous DRAM or SDRAM, which provides
a synchronous interface with guaranteed timing, including a 3 cycle command sequence
which will automatically perform a refresh operation.

Because of its relative ease of use, and nearly universal inclusion in large digital
designs, SDRAM is likely to remain a permanent part of digital design for many years to
come. Therefore this checkpoint is meant not only to provide you an easy way to buffer
data, which will simplify your project, but will also give you significant experience in
working with SDRAM.

At this point in class, you are expected to be able to design and implement a large
majority of the circuits on your own. This documentation is meant only as a loose guide,
and you should feel free to alter any specifications you feel necessary. Figures and
numbers presented here should only be used conceptually. Actual timing charts provided
by Xilinx should be used when designing your circuit.

EECS150 Spring 2008 Checkpoint 1

UCB 2 2008

“B ECAUSE YOU WILL BE KEEPING AND RELYING ON THIS CODE FOR MONTHS, IT

WILL ACTUALLY SAVE YOU MANY STRESSFUL HOURS TO ENSURE IT WORKS WELL NOW,
RATHER THAN WHEN YOU ARE ABOUT TO FINISH THE PROJECT”

2.0 Overview

Figure 1 below shows the basic datapath you will be implementing for
Checkpoint # 1. You will build the SDRAM subsystem that will read and write values
we supply into the SDRAM module. The black box provided will calculate whether or
not you are storing and retrieving data properly – it will display a count of the times that
your data is wrong on the LEDs.

This will be the first piece of the project. You should read the data sheets and
fully understand the operation of the 3rd party devices you will be interfacing with
before you come to your lab section.

In addition, you will be required to present your design at an initial design review
with your TA at the start of this week’s lab. Do not skimp or rush through your design,
doing so will cost you many hours of frustration later this week!!

Figure 1: Checkpoint 1 Datapath

EECS150 Spring 2008 Checkpoint 1

UCB 3 2008

2.1 SDRAM Subsystem
The modules you will building for this checkpoint are a combination of a protocol

bridge and a command FSM, which will take care of issuing and timing SDRAM
commands, leaving your other modules free to ignore the details of working with
SDRAM.

The primary responsibilities of your SDRAM Control module are:

1. Initialize SDRAM
a. Wait at least 100us after reset
b. Issue an initialization sequence to properly set-up the SDRAM

(See pages 12-14 and 40 of the SDRAM Datasheet)
2. Issue SDRAM commands

a. When a read or a write is ready, it should be sent to the SDRAM
b. Your module must take care to ensure proper burst timing (See

pages 46, 51, 53, 58 of the SDRAM Datasheet)

Essentially your SDRAM Control module will abstract away the fact that you are
working with SDRAM, both by taking care of the detailed and specific timing
requirements.

3.0 Prelab
Please make sure to complete the prelab before you attend your lab section. You

will not be able to finish this checkpoint in 3hrs! Labs are getting progressively
longer.

1. Read this handout thoroughly.
a. Pay particular attention to section 4.0 Lab Procedure as it

describes what you will be doing in detail.
2. Examine the documents page of the website

a. You will need to get used to reading datasheets, like these.
They form the core of information available to hardware
designers.

b. http://www-
inst.eecs.berkeley.edu/~cs150/fa04/Documents.htm#Datasheets

c. Read the MT48LC16M16 Datasheet
d. It is expected that you use the data sheets as your primary

source of information.
3. Examine the Verilog provided for this checkpoint

a. There isn’t much, so it should be pretty clear
b. FPGATop will be provided.

4. Start your design ahead of time.
a. Begin with schematics and bubble-and-arc diagrams

 i. Make sure to design your SDRAM Controller FSM
carefully.

b. Come prepared for your design review

EECS150 Spring 2008 Checkpoint 1

UCB 4 2008

 i. You will need to provide bubble and arc diagrams as well
as high level design schematics.

c. Start building your testbenches early
 i. Perhaps have one person design a module and the other

design a testbench, and then switch.
 ii. You cannot pass this checkpoint without good testbenches

d. Make sure you understand tri-state and how to implement this in
verilog.

 i. You should bring as part of your design review the 1 line of
code that will implement the necessary tri-state for this
checkpoint.

5. This will be the longest lab that you have ever done, plan accordingly.
a. You will need to test and debug your Verilog thoroughly.
b. You must build a reliable interface with a real hardware

component!

4.0 Lab Procedure
Remember to manage your Verilog, projects and folders well. Doing a poor

job of managing your files can cost you hours of rewriting code, if you accidentally
delete your files.

4.1 SDRAMControl.v
This is the main module you will need to build for this checkpoint. The port

specifications are given below. The essential functions of your module are listed in
section 2.0 , above. Your module must:

1. Initialize SDRAM
a. Wait at least 100us after reset
b. Issue an initialization sequence to properly set-up the SDRAM

(See pages 12-14 and 40 of the SDRAM Datasheet)
2. Issue SDRAM commands

a. When a read or a write is ready, it should be sent to the SDRAM
(See pages 46, 51, 53, 58 of the SDRAM Datasheet)

b. Your module must take care to ensure proper burst timing

You will find that aside from sequencing the commands from page 15 of the
SDRAM Datasheet, you will need to ensure that they are timed correctly. At the bottom
of every timing diagram, there is a table of timing information, which you will need to
use to guarantee that the commands happen not only in the right order but at the right
times. For this you will need to know that the memory chips are the -7E models, and
the clock is running at 27MHz. Remember that clock signals provided on the data sheet
may or may not be running at 27MHz.

You will be writing and reading 32-bit data to and from the SDRAM. There are two
16-bit SDRAM chips on the boards. The top 16 bits to should be written to one
SDRAM chip and the bottom 16 bits to the other.

EECS150 Spring 2008 Checkpoint 1

UCB 5 2008

Note the special Tristate buffer shown in figure 1. This is needed because data
written to the SDRAM is fed into the same RAM_DQ bus as data coming out of the
SDRAM. The output of your controller on the RAM_DQ line should be high
impedance (Z) when OutputEnable is not asserted.

For this project, we will set the burst length to be 8 and the CAS latency to be 2.

Because of the way data will be read in this project, it is not necessary to implement
refreshes, though you are free to do so.

This may seem overwhelming at first, but in reality it’s just another state machine!

Signal Width Dir Description
Clock 1 I System clock signal
Reset 1 I Reset signal
Ready 1 O Indicates that the SDRAM has finished initialization

and is ready to accept read and write requests.
Done 1 O Indicates that the SDRAM has just finished serving a

read or write request. This should be asserted on the
same cycle that the last piece of data is read or written
in the burst.

DataValid 1 O Indicates that the data on the RAM_DQ line is valid
for a read.

ReadRequest 1 I Indicates a read request (only high for one cycle).
WriteRequest 1 I Indicates a write request (only high for one cycle).
OutputEnable 1 I Tri-state enable signal to put WriteData on the

RAM_DQ line.
WriteData 32 I Data to be written to SDRAM.
Address 24 I {RowAddress, BankAddress, ColumnAddress}

Corresponds to the address that will be read from or
written to.

Mask 1 I Masking for reads and writes (assign to RAM_DQML
and RAM_DQMH when reading/writing).

RAM_CLK 1 O Read the Datasheet. (Assign to ~Clock)
RAM_CLKE 1 O Read the Datasheet.
RAM_DQMH 1 O Read the Datasheet.
RAM_DQML 1 O Read the Datasheet.
RAM_CS_ 1 O Read the Datasheet.
RAM_RAS_ 1 O Read the Datasheet.
RAM_CAS_ 1 O Read the Datasheet.
RAM_WE_ 1 O Read the Datasheet.
RAM_BA 2 O Read the Datasheet.
RAM_A 13 O Read the Datasheet.
RAM_DQ 32 I/O Read the Datasheet. (Note: This is declared as inout)

Table 1: Port Specification for SDRAMControl.v

EECS150 Spring 2008 Checkpoint 1

UCB 6 2008

4.2 AddressCounter.v

In this checkpoint, we will be writing and reading from the following section of
SDRAM:

Bank 0, Rows 0-199, Columns 0-199

Your counter should start at Row 0 and Column 0 after the reset, and iterate
through the appropriate rows and columns sequentially, then wrap back around to Row 0
and Column 0 when you’ve reached the end. For this checkpoint, your address counter
will determine which address to write to in SDRAM. Our black box will read this section
of memory to verify that the correct data was written to the right place.

You will need to modify and enhance this address counter in later checkpoints to
correspond to exactly one “screen” worth of video data, but worry about that later ☺

Signal Width Dir Description
Clock 1 I System clock signal
Reset 1 I Reset signal
AddressOut 24 O {RowAddress, BankAddress, ColumnAddress}

- RowAddress is 13-bits wide
- BankAddress is 2-bits wide
- ColumnAddress is 9-bits wide

CountBurst 1 I Increment the column address by one burst worth of
data.

Bank 2 I Indicates which bank of SDRAM to write to (assign to
2’b00 for this checkpoint – You may need to change
this for later checkpoints).

Table 2: Port specification for AddressCounter.v

Note that the CountBurst signal requires you to increment the address counter by
one burst’s worth of data!

4.3 CheckPoint0bb.v

This file will be provided for you as a black box. This module asserts all of the read and
write requests to SDRAM that your controller must handle (we guarantee that these
requests will never be simultaneously asserted). Also inside of this module is the logic
that will generate the data you will write to SDRAM and verify that the data that you
wrote was correct. It counts the number of times your data does not match the expected
value. The error count should be 0 for a working SDRAM controller.

EECS150 Spring 2008 Checkpoint 1

UCB 7 2008

Signal Width Dir Description
Clock 1 I System clock signal
Reset 1 I Reset signal
RAMReadRequest 1 O Request a read from SDRAM

(asserted for one cycle at a time).
RAMWriteRequest 1 O Request a write from SDRAM

(asserted for one cycle at a time).
RAMMask 1 O Masking for reads/writes (wire to

Mask in SDRAM controller).
RAMReadAddress 24 O Address to read from SDRAM
RAMDataToWrite 32 O Data to write to SDRAM
RAMReady 1 I Ready signal from controller
RAMDataValid 1 I DataValid signal from controller
RAMDone 1 I Done signal from controller
OutputEnable 1 O Tri-state signal to controller
CountWriteBurstAddress 1 O Tell AddressCounter to increment

one burst worth.
SelectReadAddress 1 O Mux selector signal to determine

which address to use.
FIFOReadRequest 1 O Read enable signal to FIFO
FIFODataCount 2 I DataCount signal from FIFO
FIFOReadData 32 I DOut from FIFO
Mode 2 I Set to 2’b00.
ErrorCount 32 O Indicates number of errors.
CP0Input 1 I Special signal used for check-off.
CP0Output 32 O Special signal used for check-off.

Table 3: Port Specification for Checkpoint0bb.v

4.4 fifo_sync32d.v
The sync fifo is a simple, two interface module, you write into one and read from

the other. The way this module assists is to buffer your data between two devices of
different data rates. You will need to place this fifo in a position to buffer the data coming
from the SDRAM.

Signal Width Dir Description
Clk 1 I The write clock signal
Sinit 1 I Reset, will empty the FIFO
Din 32 I Data input bus
wr_en 1 I Write the value on din into the FIFO on the

clock
rd_en 1 I Read enable, dout will be valid after the clock
Dout 32 O Data output bus, valid next cycle after rd_en
Full 1 O Indicates that the FIFO is currently full
Empty 1 O Indicates that the FIFO is currently empty

EECS150 Spring 2008 Checkpoint 1

UCB 8 2008

Data_count 2 O Indicates how many words are in the FIFO
2’b00 means 0-¼ full
2’b01 means ¼ - ½ full
2’b10 means ½- ¾ full
2’b11 means ¾ -1 full

Table 4: Port Specification for fifo_sync32.v

4.5 Tips, Notes, and Caution
Before attempting to dive into this check point keep in mind a few things as you

design your module

1. Design FIRST! Do not starts writing code until you fully understand the problem and
how you plan to implement the solution.

2. After you design your solution, build small modules of code and test them
individually. Bottom-up testing is essential at this point.

3. We have provided a file for you called mt48lc16m16a2.v. This is a simulation file
for SDRAM. Make sure you test your controller against this file before going to
board! It even gives you text feedback in the console! This will save you hours of
waiting for Place and Route to finish.

4. Remember SDRAM is actual hardware. All timing issues must be dealt with carefully,
make sure your signals are active during the correct number of cycles.

5. Make sure both you and your partner understand how all modules work and
communicate with one another.

6. Make use of modules that we have previously given you. You should not be rewriting
counters, or registers, or other pieces of code already provided for you from labs 1-5.

7. In Figure 1 there is a NEGATIVE edge-triggered register in between the SDRAM and
the FIFO. Make sure that “~Clock” is sent to the Clock input of the register.

8. Remember that RAM_CLK should be assigned to ~Clock in SDRAMControl.v!

9. The important connections that you need to make are shown in figure 1. Study it
carefully!

10. The checkpoint0bb writes a bunch of things to SDRAM and reads them all back
out again, checking the number of errors in the process. You will get 0 errors from
it if checkpoint0bb never gets to write or read anything in the first place. This
means that getting 0 errors is not a sure-fire sign that your controller is working.

