
	[image: image1.png]o v

	University of California at Berkeley

College of Engineering

Department of Electrical Engineering and Computer Science

	[image: image2.png]

	EECS 150

Spring 2008
	
	P. C. McGeer

K. S. J. Pister

	
	Problem Set #4:

Finite State Machines
Assigned 2/8/2008,

Due 2/15/2008 at 2 PM

	

Problem 1. [BCD Clock] Rick has at home a BCD clock with the following properties. It shows the current time, in binary coded decimal, on banks of LEDs, as demonstrated here

[image: image3.emf]Seconds Minutes Hours

In this picture, the right-hand column of each of hours, minutes, seconds represents the units digit; the left-hand column, the 10’s. So 8:23::15 is represented as

[image: image4.emf]
The task is to build the BCD clock, using the BCD counter you designed in HW #3 as a basic building block. Note you’ll have to modify the BCD counter to generate the 10’s digit for seconds and minutes (where we count from 0-5) .
Extra credit for the ambitious: add a 24-hour mode, so that 8:23:15 PM is represented as 20:23:15, namely:

[image: image5.emf]
.

Problem 2. Consider the farm-road traffic light controller discussed in class. Unfortunately, there has been speeding on the highway (who would guess?) and in order to slow traffic down the citizens have added a new, fancy detector to the highway: an automated radar that detects when highway traffic is speeding. Rather than issuing tickets, the automated radar simply turns the existing highway light red, whether or not there is traffic on the farm road or the highway light has just turned green. Add a new signal, Speeder, to the traffic light controller, and modify the state diagram given in class (and in your text, section 7.4.5) to accommodate this new signal.
Problem 3. Borriello and Katz, problem 7.19
Problem 4. Borriello and Katz, problem 7.26

Problem 5. The Alex Trebek problem. Three contestants in a game show are given buttons to push when they want to answer a question. The first one to push a button locks the other two out, until the next question is posed. When there is a tie (two contestants push the button at once), the tie is broken in the following manner. A counter is kept, which has the value 1, 2, or 3; the tie is broken in favor of the contestant whose number is equal to the number on the counter, or, if that contestant is not involved in the tie, the contestant closest on the “right” of the counter (where numbers, as usual, are pictured as increasing to the right, and looping from 3 to 1. This is summarized in the following table:
	Counter value/Tie Between
	1-2
	1-3
	2-3

	1
	1
	1
	2

	2
	2
	3
	2

	3
	1
	3
	3

Further, once a tie is broken in favor of contestant n, the counter is reset to value n+1 (modulo 3) so that this contestant won’t win the next tie. Assume you have three inputs for button pressed, and a reset input (reset = next question), and three outputs (which are one-hot encoded) which indicate which contestant pushed her button first. Implement the state machine to arbitrate which contestant pushed first (the state machine here is relatively trivial; most of the work is in the combinational logic), and reset the counter when necessary. Write Verilog modules for the counter and the state machine.
Problem 6. Write a Verilog module for a clocked D flip-flop (use the simple construct q <= d), with asynchronous preset and clear. Write a Verilog module for a clocked D flip-flop with synchronous preset and clear. Make preset dominant. How can you ensure that the asynchronous preset and clear don’t generate combinational logic (feel free to use synthesis to check your answer).

- 2 -

_1264597495.vsd

_1264598480.vsd

_1264597164.vsd
Seconds

Minutes

Hours

