
	[image: image1.png]o v

	University of California at Berkeley

College of Engineering

Department of Electrical Engineering and Computer Science

	[image: image2.png]

	EECS 150

Spring 2008
	
	P. C. McGeer

K. S. J. Pister

	
	Problem Set #3:

Latches, Sequential Logic, and Finite State Machines
Assigned 2/8/2008,

Due 2/15/2008 at 2 PM

	

Problem 1. Consider a new kind of flip-flop with inputs X,Y (and the clock of course) and output Q. The behavior of the X-Y flip-flop is as follows: When X and Y are both 0, the flip-flop holds its current state. When X is 0 and Y is 1, the flip-flop toggles its state (a state of 0 becomes 1 and vice versa). If X is 1 and Y is 0, the flip-flop state is made zero. If X and Y are both 1, the flip-flop state becomes 1.

a. Show how to implement the X-Y FF as a combinational logic block with inputs X, Y, Q, Q’ and single output D that is connected to a second stage that is a standard D FF. Use Nand, Nor, and Inverter logic.

b. Repeat your design for the combinational logic block of part (a), but this time using a 4:1 multiplexer with selection inputs X and Y and the data inputs wired to 0, 1, Q or Q’.

Problem 2. Borriello and Katz, problem 6.5
Problem 3. Borriello and Katz, problem 6.10
Problem 4. Consider a finite-state machine with a single input bit, which keeps track of whether the inputs seen so far have even (0) or odd (1) parity. Draw the state diagram of this finite state machine, with transition function. Using the encoding of the states 0 = even parity, 1 = odd parity, derive the next-state function. Show a schematic of the logic implementation and the Verilog code for the implementation. Compare your results to the parity circuit you derived in response to problem #2 last week.
Problem 5. Borriello & Katz, Problem 7.20. Hint: construct the truth tables for N1 and N0 in terms of S1, S0, D and C . From this, derive the state diagram Is this a Mealy or a Moore machine?
Problem 6. Implement a four-bit binary-coded decimal counter. A binary-coded decimal counter is simply a 4-bit counter which runs through the pattern 0000, 0001, 0010, 0011,…,1001,0000 (in other words, states 1010…1111 are not generated). Show the state transition table. Generate the truth tables and minimum two-level functions for each output bit, assuming the patterns 1010-1111 are don’t cares. Compare to the truth table and logic implementation for a full four-bit binary counter.
Problem 7. Borriello & Katz, problem 7.4. From your answer to part c, derive a condition that describes when you do and don’t have to worry about self-starting. Hint: suppose you start in an arbitrary state in the Gray-code counter. Can you get to any other state?

Problem 8. Consider your solution to problem #6. Draw the full state transition diagram, including the six don’t-care states. Is your counter self-starting? In other words, what happens if the FSM initializes to one of the six don’t-care states.

- 1 -

