
	[image: image1.png]o v

	University of California at Berkeley

College of Engineering

Department of Electrical Engineering and Computer Science

	[image: image2.png]

	EECS 150

Spring 2008
	
	P. C. McGeer

K. S. J. Pister

	
	Problem Set #2:

Combinational Logic and HDLs

Assigned 1/31/2008,

Due 2/8/2008 at 2 PM

	

Problem 1. The n-input parity function is defined as follows: out = 1 if and only if an odd number of the n inputs are 1. Draw the Karnaugh maps for the 2-input, 3-input, 4-input, and 5-input parity functions. Calculate the number of primes for a general n-input parity function, and the size of the minimum two-level circuit for an n-input parity function
Problem 2. An alternate definition of the n​-input parity function is given by the following recurrence equations:

P[0] = 0

P[n] = A[n]  P[n-1]

Where, as always,  represents the exclusive-or function. Design the 2-input, 3-input, 4-input, and 5-input parity functions suggested by these recurrence equations, and estimate the number of exclusive-or gates required for a general n-input parity function realized this way. Assuming that an exclusive-or gate is realized by three NAND gates, estimate the number of two-input nand gates for a general n-input parity function
Problem 3. The Evil Cardinal has taken 10 valiant Bears prisoner. He then offers the Bears a game: he will bury them all, in a line, up to their necks in sand so that each Bear will only be able to see the Bears in front of him. He will then place a red or white skullcap on the head of each Bear. Each Bear will then be required to call out the color of the skullcap on his own head. If at least nine of the 10 Bears call out the correct color, the Bears will all be set free; if more than one gets it wrong, they’re all dead. Each Bear can only call out “red” or “white”; no other communication is permitted. However, they can confer ahead of time to decide on a strategy. What strategy will permit the Bears to be set free, rather than suffering an ignominious fate (to add insult to permanent injury, the Cardinal is planning to execute the Bears with an Axe)?
Problem 4. Borriello & Katz, Problem 2.33

Problem 5. Borriello & Katz, Problem 2.40

Problem 6. (Cascade multiplication). The goal of this problem is to design a four-bit by four-bit multiplier out of a basic component that adds two-one-bit numbers. In general, given n-bit numbers a and b, and c = a * b, we can write:
c[0] = a[0] b[0]

c[1] = a[1]b[0] + a[0][b[1]

c[2] = a[2] b[0] + a[0]b[2] + a[1] b[1] + carry_out(a[1]b[0] + a[0][b[1])…

The general picture is here (Figure 3.36, A 4 X 4 NMM (nonadditive multiply module), pg 192, Digital Computer Arithmetic by Joseph J.F. Cavanagh, 1984)
[image: image3.png]by aby

dy L]
Y S = N
ah,
4, x B,
g a
e —CE b, FA by
asby ~ | A
- a; a -
P ECER [HCE R e ®
\
Ju)
|
1A e A f— oy S
I v l 1 v
3 » 5 2 2 5

Figure 3.36 A 4% 4 NMM,

All the multiplication here is unsigned. First, derive the module FA (Full Adder) as a two-level function. This module takes 3 one-bit inputs a, b, c_in, and has two outputs, sum and c_out. Build the truth table for sum and c_out as Karnaugh maps, derive the optimal two-level implementation and implement this as a Verilog module. Next, write the module mult(A, B, result) using your full adder, where A and B are four-bit unsigned numbers and result is an 8-bit unsigned number.
Problem 7. Draw the a schematic that would implement the behavior described be each of the following Verilog modules.

module sifter1 (in, A,B,C, D, clk);

 input in, clk;

 output A, B, C;

 reg A, B, C;

 always @ (posedge clk) begin

 A <= in;

 B <= A;

 D <= C;
 C <= B;

 end

endmodule
module sifter2 (in, A,B,C, D, clk);

 input in, clk;

 output A, B,C;

 reg A, B, C;

 always @ (posedge clk) begin

 A = in;

 B = A;
 D = C;

 C = B;
 end

endmodule
module sifter3 (in, A,B,C, D, clk);

 input in, clk;

 output A,B,C;

 reg A, B, C;

 always @ (posedge clk OR reset) begin

 A = in;

 B = A;

 C = B;

 D = C;

 if (reset) begin A = 0; B = 0; C=0; D=0; end

 end

endmodule

- 1 -

