University of California at Berkeley

College of Engineering

Department of Electrical Engineering and Computer Science
Checkpoint 4
Wireless Video Conferencing
1.0 Introduction
In this checkpoint you will complete the video conferencing system. The system works on a master/slave paradigm. Your final solution should be 1 bit file that can be toggled to operate as either the master or the slave. You may choose to implement your extra credit portions of this checkpoint in any manner you wish, however, you must also produce a solution that is compatible with the TA solution.
2.0 Prelab
1. Complete checkpoints 0, 1, 2 and 3.
2. Begin your design as soon as possible; this will be a challenging checkpoint.

3. Complete your design review; we will still be holding design reviews for this checkpoint.
3.0 Lab Procedure
Our Advice

Beyond conforming to our communications protocol and the size/compression of the video, you may use whatever method you deem necessary to complete the checkpoint. However, you should be aware that the advice we offer in this document is likely to be extremely helpful if followed.
Division of Labor
It is strongly recommended that one partner works on the communications engine while the other works on the graphics engine and that the parts be connected when completed. While this is not required, it will help if one partner becomes an “expert” in the operation of one of the two modules.

Single Bit File

Just to head-off any questions on this topic, you must implement both the master and the slave sides of this project using only a single bit file that can toggle between operating as a master or a slave. You may not use 2 different bit files for each master and slave.

Dual Clocks and State Machines

In this checkpoint you will probably need to have state machines that run on both the camera’s clock and the normal system clock. These state machines will enevitably need to communicate with each other. You cannot simply connect the outputs of a state machine on one clock with the inputs of a state machine on another clock! There are multiple solutions to this problem; the one utilized the TA solution involves passing all signals that must cross between differently clocked elements through a 1-bit wide dual-clocked fifo. We have included the fifo in the given files.

Recommended Graphics Engine/Communications Engine Interface

If you are going to successfully join the graphics and the communication modules, you will need to agree on an intelligent interface. Below is a description of the interface that we used. The wires used were 1-bit wide “flag” wires that indicate the state of the data wires. The data wires were partitioned into an 8-bit header wire, an 8-bit line wire, and an 80-bit data wire – there were 2 sets of each, one for data to be transmitted and one for data that had been received. The communications engine handled packetizing the data and decoding received packets, while the graphics engine handled the processing data to be transmitted and the data received.
The responsibilities of each side of the interface should be clearly understood. For the TA solution, the communications engine is responsible the initial handshake, notifying the graphics engine of the state of the communications system (ie. if the handshake is done, or still being performed) and for re-synchronizing communications (send/receive order). The communication engine is also solely responsible for handling the differences between master and slave (the graphics engine should be identical for both master and slave, handle all differences in the communication engine). The graphics engine is responsible for processing all of the video data, encoding it and decoding it, saving new frames of encoded/decoded data, and processing the wirelessly received data. None of the graphics engine’s duties need to rely on knowing whether it is a master or a slave.

Below is a description of the interface used by the TA solution:

· At startup, the communications engine handles the communications handshaking and notifies the graphics engine when it’s complete.

· The graphics engine keeps track of what data needs to be sent and when and also handles processing received data.

· When data needs to be transmitted:

1. The graphics module raises a flag that indicates that a transmission is needed and holds it high until a response is received from the communications engine.
2. When the data has been latched by the communications module a “done” signal is raised.
· When data is received:

1. The communications module raises a flag indicating that new data is valid on the data wires. This flag is held high until a response is received from the graphics engine

2. The graphics engine issues a “done” signal when it has latched the data.

That’s it! Everything else should be handled autonomously by the 2 sides with the need of help or input from the other.

4.0 Communications Engine

CP3 Politeness

Until Checkpoint #3 has concluded, do not put data on the channel at a rate of more than 1 packet every 24ms (we used 10x the normal speed of approximately 2.4ms per transmit). This will ensure that there is enough bandwidth for the people still working on Checkpoint #3. The only exception to this is the handshaking packets (ie. Non-active video data packets) which are few enough in number that they shouldn’t cause a problem. A slow version of the TA solution has been released with this in mind; it should be noted, however, that you will be required to meet a frame rate equal to approximately 2.4ms per transmission for your final project. You should work to parameterize the speed of transmission so it’s a trivial change to make it faster or slower!!

Cross Compatibility

Your solution should be able to communicate with any other student’s solutions and the TA’s solution. Your solution should be able to communicate with solutions operating at different speeds relative to yours as well. This means that your solution must should event driven, and not operate based solely on counters. The wireless communication medium does not grant a consistent speed of operation at the nanosecond level, so your solution must be able to adapt and cope with changing conditions.

Packet-loss Robustness

In the interest of maximizing our total data throughput there is no packet transmission redundancy built into the communication protocol; there is also no form of acknowledgement after a packet is received. Given that wireless communications are inherently lossy, you need to be able to resynchronize your state machines if a packet loss occurs.
Handshaking

In order to initially establish a communication link and set the correct source and destination addresses, a handshaking methodology is needed. The one we will use proceeds as follows:

· At the beginning both the master and slave begin with their destination addresses being 0xFF and their source addresses being unique.
· These packets are sent by the TA solution with delays of approximately 2.4ms and both the master and slave sides.
1. Master broadcasts “Master-Seek” packets once every 2.4ms. (24ms until the end of CP #3).
2. When a slave receives a “Master-Seek” packet it sends a “Slave-ReqAck”

3. When the master receives the “Slave-ReqAck” packet it changes its destination address to the source address of the slave and then transmits a “Master-Ready” packet with the new destination address.

4. When the slave receives a “Master-Ready” packet the slave sends a “Slave-Ready” packet and moves into a state where it can receive active video packets from the master. The “Slave-Ready” packet should be sent with its destination address as the source of the address of the master.
5. When the master receives the “Slave-Ready” ready packet, it sends its first packet of active video data.

6. Now the communication should alternate between the master and slave transmitting active video data.

Communication Protocol

The table below describes how the 96-bits of packet payload should be allocated to transmit each type of data.

· The 8-bit header designates the type of packet.

· The 8-bit line number indicates which line the respective active video data corresponds to.

· The 80-bit data contains the AV data for 32 pixels. (16 pixel pairs)
Note: The communications protocol was altered from 5-bit header and 7-bit line numbers to 8-bit values for both to aid in viewing the packet types on the packet sniffer.

	Type
	8-Bit Header
	8-Bit Line Number
	80-Bit Data Payload

	Active Video 1
	8’d1
	8’b{Xmit Line}
	SAMPLE # 0-31

	Active Video 2
	8’d2
	8’b{Xmit Line}
	SAMPLE # 32-63

	Active Video 3
	8’d3
	8’b{Xmit Line}
	SAMPLE # 64-95

	Active Video 4
	8’d4
	8’b{Xmit Line}
	SAMPLE # 96-127

	Active Video 5
	8’d5
	8’b{Xmit Line}
	SAMPLE # 128-159

	Active Video 6
	8’d6
	8’b{Xmit Line}
	SAMPLE # 160-176*

	Master-Seek
	8’d23
	XX
	80’h2

	Slave-ReqAck
	8’d24
	XX
	80’h1

	Master-Ready
	8’d25
	XX
	80’h2

	Slave-Ready
	8’d26
	XX
	80’h1

Communication Time Outs
It is important to know if a communication loss has occurred. Thus the following is the specification of how the TA solution determines is a communication loss has occurred. There are many possible reasons for such time outs and not all of them indicate a true loss of communication. For example, if a packet is lost in the air then both sides need to be able to resynchronize their communications. This is important because if 1 side thinks they transmitted AV, but the other side never received it then both will be waiting to receive data!

· After the expiration of 10ms from the last AV packet transmission, if the slave not does receive a packet it should return to a state where it can receive AV packets from the master.
· If this occurs 25 consecutive times without ever receiving an AV packet, then a communication loss is declared and the system must be reset. A message should appear on screen indicating a communication loss has occurred.

· After the expiration of 10ms from the last AV packet received, if the master does not receive a packet it should send its next AV packet.

· If this occurs 25 consecutive times without ever receiving an AV packet, then a communication loss is declared and the system must be reset. A message should appear on screen indicating a communication loss has occurred.

4.2 Graphics Engine

Video Compression
Full resolution, uncompressed video data is too much information to send reasonably over a wireless network. In order to achieve acceptable frame rates, you will need to implement a simple lossy compression algorithm. The resolution of the compressed video data will be 176 horizontal pixels by 127 lines, where pixels consist of 5 bit grayscale values.

 [image: image1.png]176 Pixels
——

Compressed

127 Lines
Frame

The resolution corresponds approximately to 4:1 resolution compression horizontally and vertically. Vertical compression can be accomplished by simply sampling every other odd active line. Horizontal compression can be done by sampling every fourth pixel pair of the line except the last eight: (360-8)/4 = 88 pixel pairs = 176 pixels. Note that the resolution is not 180x127, which corresponds to sampling every fourth pixel pair including the last eight. The reason for throwing out the last few pixel pairs of each row may not be immediately obvious, but there is a good reason for doing so.

For the sampled pixel pairs, further compression is done by keeping only the top five bits of the averaged luminance values. Because the bottleneck is wireless communication and not SDRAM, this stage of compression should be done when preparing a packet to be sent, not prior to storing into memory. “Decompressing” the 5-bit compressed sample into a 32-bit pixel pair is a similar process but in reverse, with appropriate padding for the chrominance values. You must follow this compression algorithm exactly in order to be checked off. Your submission must work with the TA solution. If you choose to implement extra credit features that will change the compression algorithm in some way, make sure you at least save a copy of your bitfile of your original solution.

Handling Compressed Frames
You will need to enhance your local video system to accommodate writing and reading compressed frames in SDRAM. You may want to write a separate module that handles requests to write compressed frames to SDRAM. The “new frame handler” would work as follows:
1. Wait for initialization of SDRAM and ChipCon
2. Request to store a complete* compressed frame into SDRAM

3. Receive acknowledgment that compressed frame has been stored

4. Tell transmitter FSM that frame in SDRAM is ready
5. Wait as the compressed frame is sent packet by packet
6. Receive signal from transmitter that the last packet for the frame has been sent

7. Once the entire compressed frame has been sent, go back to step 2.

*Note: An example of an incomplete frame is one that contains the last half of the current frame and the first half of the next frame.

Note: It is okay to lose a local frame to store a compressed one.

Be careful when you implement this part of the project – there are several catches:

1. Depending on your implementation, you might have control signals communicating between FSMs on different clocks. It is dangerous to pass these signals around carelessly. We’ve included a one-bit-wide dual-clocked memory element to allow safe and easy communication between two differently clocked modules. You may choose not to use this module if your implementation does not require one.
2. You might need to keep track of which line and pixel pair the active video data is coming from in order to filter out the unwanted ones. Depending on your implementation, you might not be able to rely on your write address counter for this information.

Displaying Compressed Video Data
After you have devised a method of storing a compressed frame, you will have to find a way to properly display it. Note: This is actually pretty tricky – you have to think carefully about how best to do this. We strongly recommend you to test this locally before testing over wireless.

Sender/Receiver FSMs
Once a compressed frame is available, the sender must read it out of the SDRAM, package the data into a packet, and request a new frame once the last packet for the frame has been sent. Similarly, the receiver must be able to decode the compressed data, write it to the correct area in RAM based on the protocol. You should display both the local frame to be sent and remote frame as it is being received. This will ensure that the data does not decay in the SDRAM.

[image: image2.png]Local Compressed
Frame to Send

Local Video at
Full Resolution

Remote Compressed
Frame being Received

Figure 1: Sectioned Screen (Not to Scale!)
Four (or Five) Port Arbiter
The SDRAM arbiter from checkpoint 2 will need at least two extra ports to accommodate for the sender and receiver FSMs. Optionally, you may also choose to add a fifth port for a module that writes compressed data. It is possible to handle the writing of compressed data in the VD processor, which allows you to keep a four-port arbiter. Either implementation works, so choose the one that is most clear to you.
5.0 Hints and Tips
1. Start early! This is by far the hardest checkpoint of the project. If you’re already done with checkpoint 3, start designing for this checkpoint immediately. Note that we are not giving you any code for this checkpoint besides the optional one-bit-wide memory element. You will need to write all the Verilog on your own!

2. Run the TA solution before you write any Verilog to see what the final result should look like.

3. Split up the project into communications and graphics. These two parts are fairly independent so you and your partner can work in parallel. Do not combine the parts until you’ve verified that each part works independently.

4. Work incrementally. Do not write thousands of lines of code and test it all at once. The following is a rough list of testable milestones to accomplish on the video side. Note that you can implement all of these independently of the communications module:
a. Display a sectioned screen as shown in the figure above.
b. Test compression by displaying only local compressed data at full frame rate, ignoring the full resolution local video.

c. Simultaneously display local compressed video and local video at full resolution and frame rate.

d. Display local video at full frame rate and local compressed video at 1 frame per second.

e. Test the sender and receiver FSMs by sending local “packets” to yourself.

