EECS150 Spring 2007

Checkpoint 2

University of California at Berkeley

College of Engineering

Department of Electrical Engineering and Computer Science
Checkpoint 2
Local Video System
1.0 Motivation
This checkpoint serves three purposes:
1. To acquaint you with the arbitration of SDRAM read/write requests
2. To give you experience piecing together sub-modules to accomplish a larger goal.
3. To build a major component of your final project.

This will be the first project checkpoint that requires a significant about of design to be done by you – this checkpoint is, for the most part, very open-ended. Just make it work!

-Good Luck!!

“Because you will be keeping and relying on this code for months, it will actually save you many stressful hours to ensure it works well now, rather than when you are about to finish the project”
2.0 Introduction

In this module you will be building the “glue” that will hold together the local video subsystem. You already have all of the pieces built; now you just need to put them together and make their communications not conflict.

Your goals for this checkpoint will be:

1. To design and implement an arbitration scheme for the SDRAM control.

a. You will need to be able to handle simultaneous read requests and write requests.

2. To implement the addressing scheme outlined in this document.

a. You will need to design an address counter to correctly access the data needed by your video encoder and to write the data correctly for your video decoder.

3. To properly buffer the data needed for your video encoder and video decoder to prevent underflow or overflow.

a. You must ensure that both modules get the necessary attention to prevent their respective FIFOs from overflowing or underflowing.

2.1 Video in SDRAM

Of course the point of this checkpoint is to store video in SDRAM. This section details the format of the video data in memory.

Given that the video data is already organized into 32bit words, and that there are two 16bit wide SDRAM chips for a total of a 32bit wide memory. In order to keep things simple, you will be sending the same control signals to both SDRAM chips.
The organization of pixels into words and words into bursts is shown in figure 1 below.

[image: image4.jpg]Graphics Subsystem

SDRAM Controller

10
address

data
32 4
2 CMD
Data
DataRequest
VE Processor
vy State Wachine
FIFO dataCount
VERamAddress
|
Enable
Counter
Data +
FifoRead
Request

324

Address Counter

InRequest

Video Encoder

Data

VDRamAddress

DataRequest

VD Processor

State Machine

dataCount

e

Enable
Counter

Address Counter

VALID

FIFO

Dataln

FifoWrite
Request

Video Decoder

Camera

Figure 1: Video Memory Organization
This simply shows the organization of the pixels within a burst. In addition, we must decide on a format for how to organize the bursts. In order to interoperate with the game demo, you will need to conform to a specific address format:

RowAddress = {{pad{1’b0}}, PixelRow, Field}

BankAddress = 2'h0

ColumnAddress = {BurstColumn, 3'h0}

Notice that this addressing scheme has a few subtleties. First of all, you must pad the top of the row address with 4*1’b0s, to make it total a 13bit for address. The PixelRow is a number from 0 to 252 or 253, indicating the active video line and Field is the 1bit field indicator using the same row addressing scheme as in checkpoint #2.

The bank address is fixed at 2’h0, because we need only a fraction of the total memory available.

The column address is based on the video pixel column. Notice that in this case the BurstColumn indicates which BURST you wish to access. The 3’h0 on the right ensures that you will always start at the beginning of a burst. For more information about word ordering within bursts, see the SDRAM Datasheet.

By dividing the SDRAM address into row and column along the same boundaries as the video row and column, we have simplified debugging, so that you can easily see which pixels are being read and written at any time.

2.2 Asynchronicity

Unlike everything you have done in the past labs and checkpoints, this checkpoint will require 2 different clock signals. The camera operates on its own independent clock. If you are curious about the differences between the 2 clock signals you can analyze them using the oscilloscope. What’s important for this checkpoint, and what will be extremely important in later checkpoints, is that you understand the limitations of working with 2 clocks. You cannot have signals generated by state machines that run off of different clocks communicate directly with each other. For this checkpoint, you will cross this boundary using an asynchronous FIFO. This module is a normal FIFO, except that its reads and writes operate on different clocks.
2.3 ITU 654 vs ITU 601

The video encoder specification that we had you follow for checkpoint #1 was the ITU 656 Video Standard, however, the camera operates under the ITU 601 Video Standard. This means that you will either need to modify your video encoder to conform to the ITU 601 standard or be clever in how you write data to RAM. The difference between the 2 standards is that the ITU 656 standard has 487 lines of active video, while the ITU 601 standard has 507.

Normally, you would want to be able to use the same Address Counter module for both your VE Processor and your VD Processor; but, this requires modification of your video encoder to conform to the ITU 601 standard. The alternative (we don’t recommend this) is that you make 2 different address counters, one that writes according to the ITU 601 standard and one that reads according to the ITU 656 standard.
The correct timing for the camera is:

· Odd Field (262 Lines)

· Total: 262 Lines

· 6 Vertical Blanking

· 254 Active

· 2 Vertical Blanking

· Even Field

· Total: 263 Lines

· 7 Vertical Blanking

· 253 Active

· 3 Vertical Blanking
The timing waveform for the ITU 601 standard is given below:
[image: image2.wmf]4

9

1

0

2

6

3

2

6

4

2

6

5

2

6

6

2

7

2

2

7

3

5

2

5

1

2

3

1

2

2

2

3

3

1

0

3

1

1

3

1

2

3

1

3

3

3

5

3

3

6

6

2

3

6

2

4

6

2

5

F

I

G

U

R

E

3

L

i

n

e

n

u

m

b

e

r

s

i

n

t

h

e

d

i

g

i

t

a

l

p

i

c

t

u

r

e

(

f

r

a

m

e

)

D

i

g

i

t

a

l

l

i

n

e

n

u

m

b

e

r

s

N

o

t

e

1

–

D

i

g

i

t

a

l

l

i

n

e

n

u

m

b

e

r

s

c

o

r

r

e

s

p

o

n

d

t

o

t

h

e

a

s

s

o

c

i

a

t

e

d

a

n

a

l

o

g

u

e

l

i

n

e

n

u

m

b

e

r

s

d

e

f

i

n

e

d

i

n

R

e

c

o

m

m

e

n

d

a

t

i

o

n

I

T

U

-

R

B

T

.

4

7

0

.

D

i

g

i

t

a

l

f

i

e

l

d

b

l

a

n

k

i

n

g

(

V

=

1

)

D

0

3

5

2

5

l

i

n

e

s

6

2

5

l

i

n

e

s

D

i

g

i

t

a

l

a

c

t

i

v

e

f

i

e

l

d

(

V

=

0

)

D

i

g

i

t

a

l

f

i

e

l

d

b

l

a

n

k

i

n

g

(

V

=

1

)

D

i

g

i

t

a

l

a

c

t

i

v

e

f

i

e

l

d

(

V

=

0

)

D

i

g

i

t

a

l

f

i

e

l

d

b

l

a

n

k

i

n

g

(

V

=

1

)

D

i

g

i

t

a

l

f

i

e

l

d

1

(

F

=

0

)

D

i

g

i

t

a

l

f

i

e

l

d

2

(

F

=

1

)

3.0 Prelab

Please make sure to complete the prelab before you attend your lab section. You will not be able to finish this checkpoint in 3hrs!
Read this handout thoroughly.

a. Pay particular attention to section 4.0 Lab Procedure as it describes what you will be doing in detail.
2. Examine the Verilog provided for this checkpoint
a. The code provided is heavily commented, make use of it!
3. Before you begin to design anything or to write any code, think about the project at hand.
4. Start your design ahead of time.
a. Begin with schematics and bubble-and-arc diagrams
b. Come prepared for your design review
4.0 Lab Procedure

4.1 Schematic Overview

[image: image1.png]1 Pair (32b)
~

1 Burst
(8x 32bits)

4. 2 SDRAMArbiter.v

The arbiter’s job is to toggle control of the SDRAM Controller. It will often be the case that the Video Encoder needs data at the same time that the Video Decoder needs to write data. The job of your arbiter is to decide who gets control and when.
SDRAM Arbiter Operation:
1. While nothing interesting is happening the arbiter should move between a wait state and a poll state on each clock cycle.

2. The arbiter sends the poll signal to all of the attached modules.

3. If the attached module needs a read or a write it raises it’s “Ready” signal.

4. If the arbiter decides to give attention and serve the module’s “Ready” request, then arbiter sends the “Data Request” signal which should be the read/write enable on the attached module’s FIFO – this will cause data to be processed in the correct direction along the “Data” line and fed into the arbiter.
5. The arbiter then needs to handle the timing, command signal assignment, and passing of data to the SDRAM controller.

6. After a full burst of data has been read/written and passed to the attached module (in the case of a read), the arbiter returns issues the “memdone” signal and polls again.

[image: image3.emf]Poll

Wait for

Response

Handle VE Handle VD

VE_Ready

memdone

memdone

VD_Ready

Clock

Tick

Clock

Tick

SDRAMArbiter State Machine

The basic port specification is below, however, you should read the included verilog file for a more thorough explanation of what you need to do and what is given to you.

	Signal
	Width
	Dir
	Description

	Clock
	1
	I
	Clock

	Reset
	1
	I
	Reset

	MemReady
	1
	I
	Ready Signal from the SDRAMControl

	SDRAM_DQ
	32
	I/O
	SDRAM DQ Line

	ColumnAddress
	6
	O
	Just what it sounds like

	RowAddress
	8
	O
	Just what it sounds like

	BankAddress
	2
	O
	Just what it sounds like

	MemDone
	1
	I
	Done signal from the SDRAMControl

	RAMReadRequest
	1
	O
	Request a read from the SDRAMControl

	RAMWriteRequest
	1
	O
	Request a write from the SDRAMControl

	RAMReadValid
	1
	I
	Valid Signal

	Poll
	1
	O
	Poll to see if VE or VD needs attention

	ServingVE
	1
	O
	Currently serving the video encoder (processor)

	ServingVD
	1
	O
	Currently serving the video decoder (processor)

	VE_DataOut
	32
	O
	Output to the VE Processor

	VE_Address
	24
	I
	Address from the VE Processor

	VE_Ready
	1
	I
	VE Processor requests attention

	VE_DataRequest
	1
	O
	Fifo Enable

	VD_DataIn
	32
	I
	Received data from the VD Processor

	VD_Address
	24
	I
	Address from the VD Processor

	VD_Ready
	1
	I
	VD Processor requests attention

	VD_DataRequest
	1
	O
	Fifo Enable

Table 1: Port Specification for SDRAMArbiter.v

4. 3 fifo_sync32d.v

The sync fifo is a simple, two interface module, you write into one and read from the other. The way this module assists is to buffer your data and allow the Video Encoder and the SDRAM to run at different rates.

	Signal
	Width
	Dir
	Description

	clk
	1
	I
	Clock

	sinit
	1
	I
	Reset, will empty the FIFO

	din
	32
	I
	Data input bus

	Wr_en
	1
	I
	Write the value on din into the FIFO on the clock

	Rd_en
	1
	I
	Read enable, dout will be valid after the clock

	dout
	32
	O
	Data output bus, valid next cycle after rd_en

	full
	1
	O
	Indicates that the FIFO is currently full

	empty
	1
	O
	Indicates that the FIFO is currently empty

	data_count
	2
	O
	Indicates how many words are in the FIFO

2’b00 means 0-¼ full

2’b01 means ¼ - ½ full

2’b10 means ½- ¾ full

2’b11 means ¾ -1 full

This is signal that you should use to determine whether or not you need a read from RAM. Make sure to use these and prevent your FIFO from overflowing or underflowing.

Table 2: Port Specification for fifo_sync32.v

4.4 fifo_async.v

The operation of the asynchronous FIFO is exactly the same as the one specified above. However, you should notice that the read and write clocks are different. This doesn’t change the basic operation of the FIFO. Keep in mind that you need to make sure that your FIFO doesn’t overflow or underflow by keeping track of the data_count.
NOTE: The data_count on the asynchronous is a word count (1 word is 32 bits, 8 words is 1 burst). You should attempt write as soon as you have a full burst worth of data in the fifo.

ALSO NOTE: Because you have 2 different clocks, you have 2 different data_count signals. Each one is asserted on the positive edge of its respective clock. Make sure you use the correct data_count signal.
4. 5 I/O Processors

The following 2 modules are up to you to design. The design is completely open-ended – all that we care about it is that they work.
These modules should be very simple. They’re only job is to keep track of when a read or a write is needed and toggle the correct signals to make it happen. Don’t make them more complicated than they need to be.
4.5.1 VEProcessor.v

The purposes of this module are:

1. To determine the address of the current burst that needs to be read in order to feed the correct data into the video encoder.

2. To determine WHEN a RAM read is needed. HINT: This is done using the “data_count” signals from the FIFO.

3. To handle read/write signals for the FIFO that will buffer the data between the SDRAM and the video encoder.

HINT: We used a simple address counter and a state machine with only 3 states to do all of this. Think about what the 3 states would be… It’s just waiting to need data, letting it be known that data is needed, and then reading the data given – that’s all! Also, think about how the address counter *should* work. Don’t make this more complicated than it needs to be!!

4.5.2 VDProcessor.v

The purposes of this module are:

1. To determine the address of the current burst that needs to be written in order to allow the VE Processor to access the correct data.

2. To determine WHEN a RAM write is needed. HINT: This is done using the “data_count” signals from the FIFO.

3. To handle read/write signals for the FIFO that will buffer the data between the SDRAM and the video decoder.

This module is also a very simple state machine with only 3 states and an address counter. What are the 3 states needed here?

4. 6 VideoDecoder.v

This module is provided for you in verilog and is commented extensively. You should be able to determine how it works by examining the code and applying your understanding of your video encoder. This module is basically just a backwards version of checkpoint #1. It, however, does not have InRequestPair and InRequestLine signals, you will need to keep track how where/when to write to the RAM yourself.
Below is an explanation of the relevant signals. We have left all of the wiring intact from our implementation of this checkpoint. You should be able to determine everything you need for a combination of an analysis of the code, the wiring, and the table below.

	Signal
	Width
	Dir
	Description

	EN
	1
	I
	This is the enable signal, we use the memready signal for the SDRAM Control for this purpose.

	SEF
	1
	O
	High at the start of an even field

	SOF
	1
	O
	High at the start of an odd field

	EAV
	1
	O
	High at the end of active video

	SAV
	1
	O
	High at the start of active video

	VALID
	1
	O
	High When the data on the DATA_OUT line is valid

	DATA_OUT
	32
	O
	The pixel pair currently being output.

Hints
· The decoder will output video signals in the opposite direction as the Video ROM did. i.e. the signals will be CB Y CR Y.

· The main modules you must write for this checkpoint are the arbiter and the 2 video processors. Each of these should be a state machine with only 3 or 4 states! Don’t over-complicate your task.
· More so than on any previous checkpoint, it is imperative that you THINK about the problem before jumping into designing or coding.

· Remember that the data_count on the asynchronous fifo is in units of words and there are separate signals that are valid for each clock.

UCB
9
2007

_1234943736.vsd

