University of California at Berkeley

College of Engineering

Department of Electrical Engineering and Computer Science

SOLUTIONS
EECS 150

 R. H. Katz

Spring 2007

Problem Set #3: Combinational and Sequential Logic (REVISED)

Assigned 30 January 2007, Due 9 February at 2 PM

1. Design a combinational logic subsystem with five inputs, I4, I3, I2, I1, I0, and three outputs, O2, O1, O0, which behaves as follows. The outputs indicate the count of the inputs that are currently true. For example, if I4 and I3 are 0, and I2, I1, and I0 are 1, then O2, O1, O0 would be 011 (i.e., three of the five inputs are 1).

a. Specify the subsystem by filling out a complete truth table for the three outputs.

	I4
	I3
	I2
	I1
	I0
	O2
	O1
	O0

	0
	0
	0
	0
	0
	0
	0
	0

	0
	0
	0
	0
	1
	0
	0
	1

	0
	0
	0
	1
	0
	0
	0
	1

	0
	0
	0
	1
	1
	0
	1
	0

	0
	0
	1
	0
	0
	0
	0
	1

	0
	0
	1
	0
	1
	0
	1
	0

	0
	0
	1
	1
	0
	0
	1
	0

	0
	0
	1
	1
	1
	0
	1
	1

	0
	1
	0
	0
	0
	0
	0
	1

	0
	1
	0
	0
	1
	0
	1
	0

	0
	1
	0
	1
	0
	0
	1
	0

	0
	1
	0
	1
	1
	0
	1
	1

	0
	1
	1
	0
	0
	0
	1
	0

	0
	1
	1
	0
	1
	0
	1
	1

	0
	1
	1
	1
	0
	0
	1
	1

	0
	1
	1
	1
	1
	1
	0
	0

	1
	0
	0
	0
	0
	0
	0
	1

	1
	0
	0
	0
	1
	0
	1
	0

	1
	0
	0
	1
	0
	0
	1
	0

	1
	0
	0
	1
	1
	0
	1
	1

	1
	0
	1
	0
	0
	0
	1
	0

	1
	0
	1
	0
	1
	0
	1
	1

	1
	0
	1
	1
	0
	0
	1
	1

	1
	0
	1
	1
	1
	1
	0
	0

	1
	1
	0
	0
	0
	0
	1
	0

	1
	1
	0
	0
	1
	0
	1
	1

	1
	1
	0
	1
	0
	0
	1
	1

	1
	1
	0
	1
	1
	1
	0
	0

	1
	1
	1
	0
	0
	0
	1
	1

	1
	1
	1
	0
	1
	1
	0
	0

	1
	1
	1
	1
	0
	1
	0
	0

	1
	1
	1
	1
	1
	1
	0
	1

b. Write a specification of this function in Verilog. HINT: Think hard about how this function actually behaves, rather than thinking in terms of Boolean equations. Can you make use of the “+” operator in Verilog to describe this subsystem?

module f(o2, o1, o0, i4, i3, i2, i1, i0);

input
i4, i3, i2, i1, i0;

output
o2, o1, o0;

wire [2:0] sum;

assign sum = i0 + i1 + i2 + i3 + i4;

assign o0 = sum[0];

assign o1 = sum[1];

assign o2 = sum[2];

endmodule

c. Find the minimized Sum of Products description using K-maps (yes, a 5 variable K-map! You can do it!).

[image: image1.wmf]

o2= (i0(i1(i2(i3)+(i0(i1(i3(i4)+(i1(i2(i3(i4)+(i0(i2(i3(i4)+(i0(i1(i2(i4)

[image: image2.wmf]
o1= (i0(i1(i3’(i4’) + (i0(i2’(i3(i4’) + (i1’(i2(i3(i4’) + (i0’(i1(i3(i4’) + (i0’(i1(i2(i3’) + (i0(i1’(i2(i3’) + (i0’(i1’(i2(i4) + (i0’(i2’(i3(i4) + (i1(i2’(i3’(i4) + (i0(i1’(i2’(i4)

[image: image3.wmf]
o0= (i0’(i1(i2’(i3’(i4’) + (i0(i1’(i2’(i3’(i4’) + (i0’(i1’(i2’(i3(i4’) +

(i0(i1(i2’(i3(i4’) + (i0’(i1(i2(i3(i4’) + (i0(i1’(i2(i3(i4’) +

(i0’(i1’(i2(i3’(i4’) + (i0(i1(i2(i3’(i4’) +

(i0’(i1’(i2’(i3’(i4) + (i0(i1(i2’(i3’(i4) + (i0’(i1(i2’(i3(i4) +

(i0(i1’(i2’(i3(i4) + (i0’(i1’(i2(i3(i4) + (i0(i1(i2(i3(i4) +

(i0’(i1(i2(i3’(i4) + (i0(i1’(i2(i3’(i4)

d. Implement the subsystem using 3 x 16:1 multiplexers.

[image: image4.wmf]
e. If implemented using a ROM, what size ROM is required? Why?

5 inputs and 3 outputs means the ROM must be 2^5 * 3 = 96 bits.
f. Compare your solutions in parts (c) and (d). Which is simpler and why (i.e., what criteria are you using to measure complexity)?

The multiplexor circuit is simpler because its implementation would use less transistors than a look-up table.
2. [image: image18..pict]

Scientists have discovered that the Plutonians use a base 12 number system. Furthermore, the digits are quite different than the ones to which we are accustomed. The first row below is 010 through 710, and the second row is 810 through 1110 (there are no digits for the base 10 numbers 12 through 15). Your task is to design a combinational logic subsystem to decode a hexadecimal digit in the range of 016 (0000) through B16 (1011) to drive a seven-segment display for the Plutonian version of the hexadecimal digits (hex 0-7 in the top row, hex 8-B in the bottom row; the rest of the hex digits are don’t cares). The LED segments are numbered counter clockwise starting at the horizontal LED at the bottom (LED0). The middle LED is LED6.

a. Specify the function by filling out a complete truth table for each of the seven segment drivers.

	I0,I1,I2,I3
	LED0
	LED1
	LED2
	LED3
	LED4
	LED5
	LED6

	0000
	1
	0
	0
	0
	0
	0
	0

	0001
	1
	0
	0
	0
	0
	0
	1

	0010
	1
	0
	0
	1
	0
	0
	0

	0011
	1
	0
	0
	1
	0
	0
	1

	0100
	0
	1
	0
	0
	0
	0
	0

	0101
	0
	1
	1
	0
	0
	0
	0

	0110
	0
	1
	1
	0
	1
	0
	0

	0111
	0
	1
	1
	0
	1
	1
	0

	1000
	0
	0
	0
	0
	0
	0
	1

	1001
	0
	1
	0
	0
	0
	0
	1

	1010
	0
	1
	1
	0
	0
	0
	1

	1011
	0
	1
	1
	0
	1
	0
	1

	1100
	X
	X
	X
	X
	X
	X
	X

	1101
	X
	X
	X
	X
	X
	X
	X

	1110
	X
	X
	X
	X
	X
	X
	X

	1111
	X
	X
	X
	X
	X
	X
	X

b. Write each as a Verilog specification.

module LEDs (led0, led1, led2, led3, led4, led5, led6, hexNum);

input [3:0] hexNum;

output
led0, led1, led2, led3, led4, led5, led6;

assign led0 = ! hexNum [3] & ! hexNum [2];

assign led1 = (hexNum [2]) |

(hexNum [3] & (hexNum [1] | hexNum [0]));

assign led2 = (hexNum [2] & (hexNum [1] | hexNum [0])) |

(hexNum [3] & hexNum [1]);

assign led3 = ! hexNum [3] & ! hexNum [2] & hexNum [1];

assign led4 = (hexNum [2] & hexNum [1]) |

(hexNum [3] & hexNum [1] & hexNum [0]);

assign led5 = hexNum [2] & hexNum [1] & hexNum [0];

assign led6 = (hexNum [0] & ! hexNum [2]) |

hexNum [3];

endmodule

c. Develop the minimized gate-level implementation using the K-map method, minimizing each K-map independently.

[image: image5.wmf]LED0 = i0’(i1’

[image: image6.wmf]LED1 = i1 + i0(i3 + i0(i2

[image: image7.wmf]LED2 = i1(i3 + i1(i2 + i0(i2

[image: image8.wmf]LED3 = i0’(i1’(i2

[image: image9.wmf]LED4 = i1(i2 + i0(i2(i3

[image: image10.wmf]LED5 = i1(i2(i3

[image: image11.wmf]LED6 = i1’(i3 + i0

d. Repeat (c), but this time, minimize so as to exploit shared product terms wherever possible, as though the implementation target is a PLA.

[image: image12.wmf]
e. How does the complexity of your answers to (c) and (d) compare? Which is simpler and why? What criteria are you using to measure the complexity of these two different implementations?

Although (d) may not be the most simplified sum of products expression, it will be easier to implement than (c) because many of the terms may be shared between the outputs.
3. Consider a new kind of flip-flop with inputs X,Y (and the clock of course) and output Q. The behavior of the X-Y flip-flop is as follows: When X and Y are both 0, the flip-flop holds its current state. When X is 0 and Y is 1, the flip-flop toggles its state (a state of 0 becomes 1 and vice versa). If X is 1 and Y is 0, the flip-flop state is made zero. If X and Y are both 1, the flip-flop state becomes 1.

a. Show how to implement the X-Y FF as a combinational logic block with inputs X, Y, Q, Q’ and single output D that is connected to a second stage that is a standard D FF. Use Nand, Nor, and Inverter logic.

[image: image13.wmf]
b. Repeat your design for the combinational logic block of part (a), but this time using a 4:1 multiplexer with selection inputs X and Y and the data inputs wired to 0, 1, Q or Q’.

[image: image14.wmf]
4. Using the X-Y FF of Problem 3, show how to wire up X and Y to implement the following other kinds of FFs. Your solution should use minimum logic – the fewest possible gates and literals.

a. Implement the same function as a D FF by designing a combinational logic block whose inputs are drawn from the values constant 0, constant 1, D, D’, Q, Q’, and whose outputs are X and Y.

1 (X

D (Y

b. Implement the same function as a T FF (a toggle flip-flop inverts its state whenever the T input is true; it holds its current state otherwise) by designing a combinational logic block whose inputs are drawn from the values constant 0, constant 1, D, D’, Q, Q’, and whose outputs are X and Y.

0 (X

T (Y

5. Design a 3-bit counter that implements the following sequence: 000, 111, 001, 110, 010, 101, 011, 100, and repeat. Design the counter with a reset input that causes the counter to enter the 000 state.

a. Write a Verilog specification for this counter.

module MyCounter (Clock, Reset, Out);

input Clock, Reset;

output [2:0] Out;

reg [2:0] CurrentState, NextState, Out;

assign Out = CurrentState;

always @(posedge Clock) begin

if (Reset)

CurrentState <= 3’b000;

else

CurrentState <= NextState;

end

always @(CurrentState) begin

case (CurrentState)

3’b000: NextState = 3’b111;

3’b111: NextState = 3’b001;

3’b001: NextState = 3’b110;

3’b110: NextState = 3’b010;

3’b010: NextState = 3’b101;

3’b101: NextState = 3’b011;

3’b011: NextState = 3’b100;

3’b100: NextState = 3’b000;

default: NextState = 3’b000;

endcase

end

endmodule

b. Design the next state functions and minimize for PLA-based implementation.

CS = CurrentState, NS = NextState

	CS[2]
	CS[1]
	CS[0]
	NS[2]
	NS[1]
	NS[0]

	0
	0
	0
	1
	1
	1

	0
	0
	1
	1
	1
	0

	0
	1
	0
	1
	0
	1

	0
	1
	1
	1
	0
	0

	1
	0
	0
	0
	0
	0

	1
	0
	1
	0
	1
	1

	1
	1
	0
	0
	1
	0

	1
	1
	1
	0
	0
	1

[image: image15.wmf]

NS[2] = CS[1]’(CS[2]’ + CS[0]’(CS[2]’ + CS[0](CS[2]’

NS[1] = CS[1](CS[2]’ + CS[0](CS[1]’ + CS[0]’(CS[1](CS[2]

NS[0] = CS[0]’(CS[2]’ + CS[0](CS[2]

c. Show how to implement this counter using 2:1 multiplexers and D flip-flops only. You may assume that the D FFs have a reset input.

[image: image16.wmf]
[image: image17.wmf]

