EECS150 - Digital Design Lecture 28 - More Flip-flops

May 1, 2003
John Wawrzynek

Cross-coupled NOR gates

NOR	
00	1
01	0
10	0
11	0

- If both $R=0 \& S=0$, then cross-couped NORs equivalent to a stable latch:

- If either R or S becomes $=1$ then state may change:

0

$$
0 \rightarrow 1 \rightarrow 0
$$

- What happens if R or S or both become $=1$?

Asynchronous State Transition Diagram

QQ' $=00$ is often called a "forbidden state"

Nand-gate based SR latch

Fig. 5-4 $S R$ Latch with NAND Gates

- Same behavior as cross-coupled NORs with invertered inputs.

Level-sensitive SR Latch

(a) Logic diagram

C	S	R	Next state of Q
0	X	X	No change
1	0	0	No change
1	0	1	$Q=0 ;$ Reset state
1	1	0	$Q=1 ;$ set state
1	1	1	Indeterminate

(b) Function table

Fig. 5-5 SR Latch with Control Input

- The input " C " works as an "enable" signal, latch only changes output when C is high.
- usually connected to clock.
- Generally, it is not a good idea to use a clock as a logic signal (into gates etc.). This is a special case.

D-latch

(b) Function table

Fig. 5-6 D Latch
Compare to transistor version:

Flip-flops

Fig. 5-10 D-Type Positive-Edge-Triggered Flip-Flop

J-K FF

- Add logic to eliminate "indeterminate" action of RS FF.
- New action is "toggle"
- J = "jam"
- $\mathrm{K}=$ "kill"

$J \mathrm{~K} Q(\mathrm{t})$	$Q(t+\Delta)$
000	0 hold
001	1
010	0
011	0
100	1 set
101	1 - set
110	1
111	0 toggle

J-K Flip-flop from D-FF

(a) Circuit diagram
(b) Graphic symbol

Fig. 5-12 JK Flip-Flop

Toggle Flip-flop from D-FF

(a) From $J K$ flip-flop

(b) From D flip-flop

(c) Graphic symbol

Fig. 5-13 T Flip-Flop

Storage Element Taxonomy

synchronous
level-sensitive edge-triggered
D-type
JK-type RS-type
asynchronous
n.a.
n.a.
\star
"latch"

* "natural" form
\checkmark "possible" form

Design Example with RS FF

- With D-type FF state elements, new state is computed based on inputs \& present state bits - reloaded each cycle.
- With RS (or JK) FF state elements, inputs are used to determine conditions under which to set or reset state bits.
- Example: bit-serial adder (LSB first)
n-bit shift registers

With D-FF for carry

Bit-serial adder with RS FF

- RS FF stores the carry:

