

•	 Performance: In general, xors are only ever 2-input and never connect in series. Therefore the minimum clock period for these circuits is: T > T_{2-input-xer} + clock overhead Very little latency, and independent of nl This can be used as a fast counter, if the particular sequence of count values is not important. Example: micro-code micro-pc 	Can be used as a random number generator. Sequence is a pseudo- random sequence: numbers appear in a random sequence repeats every 2*-1 patterns Random numbers useful in: computer graphics cryptography automatic testing Used for error detection and correction CC (evelic redundancy
		CRC (cyclic redundancy codes) ethernet uses them

Galois Fields - the tl	heory behind LFSRs
 LFSR circuits performs multiplication on a <i>field</i>. A field is defined as a <i>set</i> with the following: two operations defined on it: 	 Example fields: set of rational numbers set of real numbers set of integers is not a field (why?) Einite fields are called <i>Galois</i> fields. Example: Binary numbers 0,1 with XOR as "addition" and AND as "multiplication". Called GF(2).
Spring 2003 EECS150 -	Lec26-ECC Page 4

г

	Galois Fields - The theory behind LFSRs					
•	Consider polynomials whose coefficients come from GF(2).					
•	Each term of the form x^n is either present or absent.					
•	Examples: 0, 1, x, x^2 , and $x^7 + x^6 + 1$					
	$= I \cdot x^7 + I \cdot x^6 + 0 \cdot x^3 + 0 \cdot x^4 + 0 \cdot x^3 + 0 \cdot x^2 + 0 \cdot x^1 + I \cdot x^0$					
•	With addition and multiplication these form a field:					
•	"Add": XOR each element individually with no carry: $\frac{x^{4} + x^{3} + \dots + x + I}{\frac{x^{4} + x^{2} + x^{2}}{x^{3} + x^{2}} + I}$					
•	"Multiply": multiplying by x^n is like shifting to the left.					
	$\begin{array}{c} x^2 + x + I \\ \times & x + I \\ \hline x^2 + x + I \\ \frac{x^2 + x^2 + x}{x^3} + I \end{array}$					
	Spring 2003 EECS150 – Lec26-ECC Page 5					

Galois Fields - The	theory behind LFSRs
 These polynomials form a <i>Galois (finite)</i> field if we take the results of this multiplication modulo a prime polynomial <i>p(x)</i>. A prime polynomial is one that cannot be written as the product of two non-trivial polynomials <i>q(x)r(x)</i> Perform modulo operation by subtracting a (polynomial) multiple of <i>p(x)</i> from the result. If the multiple is 1, this corresponds to XOR-ing the result with <i>p(x)</i>. For any degree, there exists at least one prime polynomial. With it we can form <i>GF(2ⁿ)</i> 	 Additionally, Every Calois field has a primitive element, a, such that all non-zero elements of the field can be expressed as a power of α. By raising α to powers (modulo <i>p(x)</i>), all non-zero field elements can be formed. Certain choices of <i>p(x)</i> make the simple polynomial <i>x</i> the primitive element. These polynomials are called <i>primitive</i>, and one exists for every degree. For example, <i>x</i>⁺ + <i>x</i> + <i>l</i> is primitive. So α - <i>x</i> is a primitive element and successive powers of α will generate all non-zero field near the sumple and non-zero field primitive.
Spring 2003 EECS150	- Lec26-ECC Page 6

P	rimitive Po	lynomials
$x^2 + x + l$	$x^{12} + x^6 + x^4 + x^{-1}$	$x^{22} + x + l$
$x^3 + x + l$	$r^{13} + r^4 + r^3 + r$	$x^{23} + x^5 + 1$
$x^4 + x + I$	$r^{14} + r^{10} + r^6 + r$	
$x^5 + x^2 + I$	$r^{15} + r + l$	$x^{25} + x^3 + l$
$x^{6} + x + l$	$r^{16} + r^{12} + r^3 + r$	
$x^7 + x^3 + I$	$r^{17} + r^3 + 1$	$x^{27} + x^5 + x^2 + x + l$
$x^3 + x^4 + x^3 + x^2 + I$	$x^{18} + x^7 + 1$	$x^{28} + x^3 + 1$
$x^9 + x^4 + I$ $x^{10} + x^3 + I$	$r^{19} + r^5 + r^2 + r^+$	
	$x^{20} + x^3 + I$	$r^{30} + r^{6} + r^{4} + r + l$
$x^{11} + x^2 + I$	$x^{2i} + x^2 + 1$ $x^{2l} + x^2 + 1$	$x^{-2} + x^{-2} + x$
	$x^{-1} + x^{-1} + 1$	$x^{32} + x^{7} + x^{6} + x^{2} + l$
Galois Field	Hardw	are $x^{32} + x^{7} + x^{5} + x^{2} + 1$
Multiplication by x	⇔ shift le	eft
	$n(x) \Leftrightarrow XOR-i$	ng with the coefficients of $p(x)$
·g · · · · · · · · · · · ·	* * 2	the most significant coefficient is 1.
Obtaining all 2n-1 non		g and XOR-ing 2^{n} -1 times.
elements by evaluatin		g and storting 2 i timeo.
for $k = 1,, 2^n - 1$.a	
,,	FE00100 1	N FOG
Spring 2003	EECS150 - Lec.	26-ECC Page 8

Iteration step		quotient divisor		remainder
0	Initial values	0000	0010 0000	0000 0111
1	1: rem=rem-div	0000	0010 0000	1110 0111
	2b: rem<0 \Rightarrow +div, sll Q, Q0=0	0000	0010 0000	0000 0111
	shift div right	0000	0001 0000	0000 0111
2	1: rem=rem-div	0000	0001 0000	1111 0111
	2b: rem<0 \Rightarrow +div, sll Q, Q0=0	0000	0001 0000	0000 0111
	3: shift div right	0000	0000 1000	0000 0111
3	1: rem=rem-div	0000	0000 1000	1111 1111
	2b: rem<0 \Rightarrow +div, sll Q, Q0=0	0000	0000 1000	0000 0111
	3: shift div right	0000	0000 0100	0000 0111
4	1: rem=rem-div	0000	0000 0100	0000 0011
	2a: rem≥0 ⇒ sll Q, Q0=1	0001	0000 0100	0000 0011
	3: shift div right	0001	0000 0010	0000 0011
5	1: rem=rem-div	0001	0000 0010	0000 0001
	2a: rem≥0 ⇒ sll Q, Q0=1	0011	0000 0010	0000 0001
	3: shift div right	0011	0000 0001	0000 0001

Observations on Divide Version 1

EECS150 - Lec26-ECC

- 1/2 bits in divisor always 0 \Rightarrow 1/2 of 64-bit adder is wasted \Rightarrow 1/2 of divisor is wasted
- Instead of shifting divisor to right, shift remainder to left?
- 1st step cannot produce a 1 in quotient bit (otherwise quotient $\ge 2^n$) \Rightarrow switch order to shift first and then subtract, can save 1 iteration

Spring 2003

Page 16

<u>32</u>-bit Divisor register, <u>32</u>-bit ALU, 64-bit Remainder register, 32-bit Quotient register

DIVIDE HARDWARE Version 2

Observations on Divide Version 3

- Same Hardware as shift and add multiplier: just 63-bit register to shift left or shift right
- Signed divides: Simplest is to remember signs, make positive, and complement quotient and remainder if necessary
 - Note: Dividend and Remainder must have same sign
 - Note: Quotient negated if Divisor sign & Dividend sign disagree e.g., -7 ÷ 2 = -3, remainder = -1

EECS150 - Lec26-ECC

 Possible for quotient to be too large: if divide 64-bit integer by 1, quotient is 64 bits ("called saturation")

Spring 2003

Page 22