Linear Feedback Shift Registers (LFSRs)

. These are n-bit counters exhibiting pseudo-random behavior.

- Built from simple shift-registers with a small number of xor gates

Used for

- random number generation
- counters
gand correction
Advantages
- very little
- high speed operatio

Example 4-bit LFSR:

Spring 2003
EECS 150 - Lec26-ECC

-

Applications of LFSRs

Performance:

- In general, xors are only ever 2-input and never connect in series.
- Therefore the minimum clock period for these circuits is:
$T>T_{2 \text {-inoutur }}+$ clock overhead - Very little latency, and independent - Very

This can be used as a fast counter, if the particular sequence of count values is not important.
Example: micro-code micro-p

- Can be used as a random number generator. - Sequence is a pseudo andom sequence
numbers appear in a
random sequence repeats every 2^{n}-1 patterns
- Random numbers useful in: - computer graphics - cryptography
- automatic testing

Used for error detection and correction

- CRC (cyclic redundancy
- ethernet uses them

Spring 2003
EECS150 - Lec26-ECC
Page 3

Galois Fields - the theory behind LFSRs

- LFSR circuits performs
multiplication on a field.
multiplication on a field.
A field is defined as a set with the
following:
following:
two operations defined on it:
_ - "addition" and "multiplication"
- closed under these operations
hold
- additive and multiplicative identity
elements
- additive inverse for every elemen
- multiplicative inverse for every
non-zero element
- Example fields:
- set of rational numbers
- set of real numbers
set of integers is not a field
(why?) (why?)
Finite fields are called Galois fields.
Example:
- Binary numbers 0,1 with XOR as "addition" and AND as as "addition" and AND as - Called GF(2).

Galois Fields - The theory behind LFSRs

- Consider polynomials whose coefficients come from GF(2).
- Each term of the form x^{n} is either present or absent.

Examples: $0,1, x, x^{2}$, and $x^{1}+x^{6}+1$

$$
=1 \cdot x^{7}+1 \cdot x^{6}+0 \cdot x^{5}+0 \cdot x^{4}+0 \cdot x^{3}+0 \cdot x^{2}+0 \cdot x^{1}+1 \cdot x^{0}
$$

- With addition and multiplication these form a field:
"Add": XOR each element individually with no carry:

$$
\begin{array}{r}
x^{4}+x^{3}+\quad+x+1 \\
+\quad x^{4}+\quad+x^{2}+x \\
\hline x^{3}+x^{2} \quad+1
\end{array}
$$

- "Multiply": multiplying by x^{n} is like shifting to the left.

$$
\begin{array}{r}
x^{2}+x+1 \\
\times \quad x+1 \\
\hline \begin{array}{l}
x^{2}+x+1 \\
\hline x^{3}+x^{2}+x \\
\hline x^{3}+1
\end{array}
\end{array}
$$

Spring 2003
EECSI50-Lec26-ECC
Page 5

Galois Fields - The theory behind LFSRs

- These polynomials form a

 Galois (finite) field if we take the results of this multiplication modulo a prime polynomial $p(x)$.A prime polynomial is one that cannot be written as the produc of two non-trivial polynomials $q(x) r(x)$

- Perform modulo operation by
subtracting a (polynomial)
multiple of $p(x)$ from the result.
If the multiple is 1 , this corresponds to
For any degree, there exists at least one prime polynomial
With it we can form $G F\left(2^{n \prime}\right)$ Spring 2003

Additionally,
Every Galois field has a primitive element, α, such that all non-ze elements of the field can be raising α to powers (modulo $p(x)$, all non-zero field elements can be formed.
Certain choices of $p(x)$ make the simple polynomial the primitive element. These polynomials ar called primitive, and one exists for every degree.
For example, $x^{4}+x+l$ is primitive. So $\alpha=x$ is a primitive element and
successive powers of α will successive powers of α will GF(16). Example on next slide.
EECS $150-$ Lece 26 -ECC

Building an LFSR from a Primitive Polynomial

- For k-bit LFSR number the fip-flops with FF1 on the right.
- The feedback path comes from the Q output of the leftmost FF
- Find the primitive polynomial of the form $x^{k}+\ldots+1$
- Find the primitive polynomial of the form $x^{a}+\ldots+1$.
- The $x^{0}=1$ term corresponds to connecting the feedback directly to the D input
of FF 1 .

Each term of the form x^{n} corresponds to connecting an xor between $\mathrm{FF} n$ and
4-bit example, uses $x^{4}+x+1$
$-x^{4} \Leftrightarrow$ FF4's Q output
$x \Leftrightarrow$ xor between FF1 and FF2

$-1 \Leftrightarrow \mathrm{FF} 1$'s D input

To build an 8 -bit LFSR, use the primitive polynomial $x^{8}+x^{4}+x^{3}+x^{2}+1$ connect xors between FF2 and FF3, FF3 and FF4, and FF4 and FF5.

Error Correction with LFSRs

XOR Q4 with incoming bit sequence. Now values of shift-register don't follow a
ixed pattern. Dependent on input sequence

- Look at the value of the register after 15 cycles: "1010"

Note the length of the input sequence is $2^{4}-1=15$ (same as the number of
different nonzero patters for different nonzero patters for the original LFSR)
Binary message occupies only 11 bits, the remaining 4 bits are "0000".

- They would be replaced by the final result of our LFSR: "1010"
- If we run the sequence back through the LFSR with the replaced bits, we would get
- "0000" for the final result.

4 parity bits, "neutraliz" the sequence with respect to the LFSR.
$110010001110000 \Rightarrow 1010$ $110010001110000 \Rightarrow 1010$
If parity bits not all zero, an error occurred in transmission.
If parity bits not all zero, an error occurred in transmission.
If number of parity bits $=\log$ total number of bits, then single bit errors can be
Using more parity bits allows more errors to be detected.

- Ethernet uses 32 parity bits per frame (packet) with 16 -bit LFSR

Spring 2003 EECS 150 - Lec26-ECC
EECS 150 - Lece26-ECC

DIVIDE HARDWARE Version 1

- 64-bit Divisor register, 64-bit adder/subtractor, 64-bit Remainder register, 32-bit Quotient register

Spring 2003
EECSI 10 - Lec26-ECC
Page 13

Observations on Divide Version 1

- $1 / 2$ bits in divisor always 0
$\Rightarrow 1 / 2$ of 64 -bit adder is wasted
$\Rightarrow 1 / 2$ of divisor is wasted
- Instead of shifting divisor to right, shift remainder to left?
- $1^{\text {st }}$ step cannot produce a 1 in quotient bit (otherwise quotient $\geq 2^{\text {n }}$) \Rightarrow switch order to shift first and then subtract, can save 1 iteration

Version 1 Division Example 7/2

Iteration step		quotient divisor		remainder
0	Initial values	0000	00100000	
1	1: rem=rem-div	0000	00100000	11100111
	2b: rem<0 $\Rightarrow+$ div, sll $\mathrm{Q}, \mathrm{Q} 0=0$	0000	00100000	00000111
	3: shift div right	0000	00010000	00000111
2	1: rem=rem-div	0000	00010000	11110111
	2b: rem<0 $\Rightarrow+$ div, sll Q, Q0=0	0000	00010000	00000111
	3: shift div right	0000	00001000	00000111
3	1: rem=rem-div	0000	00001000	11111111
	2b: rem<0 $\Rightarrow+$ div, sll $\mathrm{Q}, \mathrm{Q}=0$	0000	00001000	00000111
	3: shift div right	0000	00000100	00000111
4	1: rem=rem-div	0000	00000100	00000011
	2a: rem $\geq 0 \Rightarrow$ sll $\mathrm{Q}, \mathrm{Q}=1$	0001	00000100	00000011
	3: shift div right	0001	00000010	00000011
5	1: rem=rem-div	0001	00000010	00000001
	2a: rem $\geq 0 \Rightarrow$ sll $\mathrm{Q}, \mathrm{Q} 0=1$	0011	00000010	00000001
	3 : shift div right	0011	00000001	00000001
	Spring 2003 EE	EECSI $50-\mathrm{Lec} 26$-ECC		

DIVIDE HARDWARE Version 2

- 32-bit Divisor register, 32-bit ALU, 64-bit Remainder register, 32-bit Quotient register

Spring 2003
EECS $150-$ Lece26-ECC
Page 17

Observations on Divide Version 2

- Eliminate Quotient register by combining with Remainder as shifted left.
- Start by shifting the Remainder left as before.
- Thereafter loop contains only two steps because the shifting of the Remainder register shifts both the remainder in the left half and the quotient in the right half
- The consequence of combining the two registers together and the new order of the operations in the loop is that the remainder will shifted left one time too many.
- Thus the final correction step must shift back only the remainder in the left half of the register

Observations on Divide Version 3

- Same Hardware as shift and add multiplier: just 63-bit register to shift left or shift right
- Signed divides: Simplest is to remember signs, make positive, and complement quotient and remainder if necessary
- Note: Dividend and Remainder must have same sign
- Note: Quotient negated if Divisor sign \& Dividend sign disagree e.g., $-7 \div 2=-3$, remainder $=-1$
- Possible for quotient to be too large: if divide 64-bit integer by 1, quotient is 64 bits ("called saturation")

DIVIDE HARDWARE Version 3

- 32-bit Divisor register, 32-bit adder/subtractor, 64-bit Remainder register, ($\mathbf{0}$-bit Quotient reg)

Spring 2003
EECS 150 - Lece26-ECC

