Combinational Logic Implementation
Two-level logic Implementations of two-level logic I NAND/NOR
Multi-level logic \\| Factored forms \|
\|l Time behavior 1 Gate delays 1 Hazards
Regular logic II Multiplexers \\| Decoders \|

Two-level Logic using NAND Gates

|| Replace minterm AND gates with NAND gates
II Place compensating inversion at inputs of OR gate

Two-level Logic using NAND Gates (cont'd)
|| OR gate with inverted inputs is a NAND gate

$$
\text { de Morgan's: } \quad A^{\prime}+B^{\prime}=(A \cdot B)^{\prime}
$$

- Two-level NAND-NAND network
\| Inverted inputs are not counted
|| In a typical circuit, inversion is done once and signal distributed

Two-level Logic using NOR Gates

- Replace maxterm OR gates with NOR gates
|l Place compensating inversion at inputs of AND gate

Two-level Logic using NOR Gates (cont'd)

- AND gate with inverted inputs is a NOR gate
\| de Morgan's: $\quad A^{\prime} \cdot B^{\prime}=(A+B)^{\prime}$
- Two-level NOR-NOR network
\|I Inverted inputs are not counted
\| In a typical circuit, inversion is done once and signal distributed

Two-level Logic using NAND and NOR Gates

NAND-NAND and NOR-NOR networks	
de Morgan's law:	$(A+B)^{\prime}=A^{\prime} \cdot B^{\prime}$
	$(A \cdot B)^{\prime}=A^{\prime}+B^{\prime}$
	$A+B=\left(A^{\prime} \cdot B^{\prime}\right)^{\prime}$
	$(A \cdot B)=\left(A^{\prime}+B^{\prime}\right)^{\prime}$

|| In other words --
I OR is the same as NAND with complemented inputs
AND is the same as NOR with complemented inputs
\| NAND is the same as OR with complemented inputs
II NOR is the same as AND with complemented inputs

Conversion Between Forms (cont'd)
II Example: verify equivalence of two forms

$Z=\left[(A \cdot B)^{\prime} \cdot(C \cdot D)^{\prime}\right]^{\prime}$
$=\left[\left(A^{\prime}+B^{\prime}\right) \cdot\left(C^{\prime}+D^{\prime}\right)\right]^{\prime}$
$=\left[\left(A^{\prime}+B^{\prime}\right)^{\prime}+\left(C^{\prime}+D^{\prime}\right)^{\prime}\right]$
$=(A \cdot B)+(C \cdot D)^{\checkmark}$

CS 150-Spring 2001-Combinational Implementation -9

Examples of using AOI gates

1. Example:

II $F=B C^{\prime}+A C^{\prime}+A B$
\| $F^{\prime}=A^{\prime} B^{\prime}+A^{\prime} C+B^{\prime} C$

11 $F=(A+B)\left(A+C^{\prime}\right)\left(B+C^{\prime}\right)$
$1 F^{\prime}=\left(B^{\prime}+C\right)\left(A^{\prime}+C\right)\left(A^{\prime}+B^{\prime}\right)$
|| Implemented by 2 -input 3 -stack OAI gate
| Example: 4-bit equality function
\| $Z=\left(A O B 0+A O^{\prime} B O^{\prime}\right)\left(A 1 B 1+A 1^{\prime} B 1^{\prime}\right)\left(A 2 B 2+A 2^{\prime} B 2^{\prime}\right)\left(A 3 B 3+A 3^{\prime} B 3^{\prime}\right)$

CS 150-Spring 2001- Combinaticnal Implementation - 18

Examples of Using AOI Gates (cont'd)

1. Example: $A O I$ implementation of 4-bit equality function

CS 150-Spring 2001-Combinaticnal Implementation - 19

Time Behavior of Combinational Networks

II Waveforms
\|Visualization of values carried on signal wires over time
II Useful in explaining sequences of events (changes in value)

- Simulation tools are used to create these waveforms Input to the simulator includes gates and their connections II Input stimulus, that is, input signal waveforms
- Some terms

1 Gate delay-time for change at input to cause change at output Min delay-typical/nominal delay-max delay Careful designers design for the worst case
1 Rise time-time for output to transition from low to high voltage 1 Fall time-time for output to transition from high to low voltage 1 Pulse width-time an output stays high or low between changes

Summary for Multi-level Logic

|| Advantages

\| Circuits may be smaller

1. Gates have smaller fan-in
(1) Circuits may be faster

- Disadvantages
\| More difficult to design
॥ Tools for optimization are not as good as for two-level
|| Analysis is more complex

Momentary Changes in Outputs

1. Can be useful-pulse shaping circuits
|l Can be a problem-incorrect circuit operation (glitches/hazards)

- Example: pulse shaping circuit ${ }^{A} D^{\circ}{ }^{B} D_{0} C^{C}-\square$
$\| A^{\prime} \cdot A=0$
$\|$ delays matter in function

Hazards/Glitches

|1 Hazards/glitches: unwanted switching at the outputs
\| Occur when different paths through circuit have different propagation delays

As in pulse shaping circuits we just analyzed
\| Dangerous if logic causes an action while output is unstable May need to guarantee absence of glitches
|| Usual solutions
11) Wait until signals are stable (by using a clock): preferable (easiest to design when there is a clock-synchronous design)
(1) Design hazard-free circuits: sometimes necessary (clock not used - asynchronous design)

Making Connections

|| Direct point-to-point connections between gates \| Wires we've seen so far

1. Route one of many inputs to a single output --multiplexer

- Route a single input to one of many outputs --demultiplexer

Mux and Demux (cont'd)

|| Uses of multiplexers/demultiplexers in multi-point connections

Demultiplexers/Decoders									
\|	Decoders/demultiplexers: general concept \\| Single data input, n control inputs, 2^{n} outputs \\| Control inputs (called "selects" ($($)) represent binary index of output to which the input is connected \\| Data input usually called "enable" (G)								
1:2 Decoder: \quad 3:8 Decoder:									
OO $=\mathrm{G} \quad \mathrm{S}^{\prime}$		$00=\mathrm{G}$	S2'	S1'	S0'				
O1 $=\mathrm{G} \quad \mathrm{S}$		$\mathrm{O} 1=\mathrm{G}$	S2'	S1'	S0				
		$\mathrm{O} 2=\mathrm{G}$	S2'	S1					
2:4 Decoder:		O3 $=$ G	S2'	S1	So				
O0 = G	S1' S0' $^{\prime}$	$\mathrm{O} 4=\mathrm{G}$							
$\mathrm{O} 1=\mathrm{G}$	S1' S0	O5 $=\mathrm{G}$	S2	S1'	So				
$\mathrm{O} 2=\mathrm{G}$	S1 S0'	O6 = G	S2	S1	S0'				
$\mathrm{O} 3=\mathrm{G}$	S1 S0	O7 = G	S2	S1	S0				

Programmable Logic Arrays

I. Pre-fabricated building block of many AND/OR gates || Actually NOR or NAND
|l "Personalized" by making or breaking connections among gates 1 Programmable array block diagram for sum of products form

Alternate Representation for High Fan-in Structures

- Short-hand notation--don't have to draw all the wires
\| Signifies a connection is present and perpendicular signal is an input to gate

FO $=A B+A^{\prime}$ in
$F 0=A B+A^{\prime} B^{\prime}$
$F 1=C D^{\prime}+C^{\prime} D$
A B C D

Programmable Logic Array Example

11 Multiple functions of $A, B, C \quad$ full decoder as for memory address - $F 1=A B C$
|l $F 2=A+B+C$

1) $F 3=A^{\prime} B^{\prime} C^{\prime}$

II $F 4=A^{\prime}+B^{\prime}+C^{\prime}$
\| $F 5=A \times \operatorname{cor} B \times 1 \times$

1) $\mathrm{F} 6=A \times n o r B \times \operatorname{nor} C$ $A B C \mid F 1 ~ F 2 ~ F 3 F 4 ~ F 5 ~ F 6 ~$

0	0	0	0	0	1	1	0
0	0	1	0	1	0	1	1
0	1	0	0	1	0	1	1
0	1	1	0	1	0	1	1
0	0	0					

1	1	1	0	1	0	1	0
1	1	0	1	0	1	0	
1	1	1	1	1	0	0	1

S150-Spring 2001 - Combinational I mplementation - 48

ROM Structure

- Similar to a PLA structure but with a fully decoded AND array
| Completely flexible OR array (unlike PAL)

Regular Logic Structures for Two-level Logic

|| ROM - full AND plane, general OR plane
Cheap (high-volume component)
Can implement any function of n inputs
I Medium speed

- PAL - programmable AND plane, fixed OR plane Intermediate cost
\| Can implement functions limited by number of terms
High speed (only one programmable plane that is much smaller High speed (only one p
than ROM's decoder)
11 PLA - programmable AND and OR planes
\| Most expensive (most complex in design, need more sophisticated tools)
Can implement any function up to a product term limit
Slow (two programmable planes)

ROMs and Combinational Logic

|| Combinational logic implementation (two-level canonical form) using a ROM

$$
\begin{aligned}
& F 0=A^{\prime} B^{\prime} C+A B^{\prime} C^{\prime}+A B^{\prime} C \\
& F 1=A^{\prime} B^{\prime} C+A^{\prime} B C^{\prime}+A B C \\
& F 2=A^{\prime} B^{\prime} C^{\prime}+A^{\prime} B^{\prime} C+A B^{\prime} C^{\prime} \\
& F 3=A^{\prime} B C+A B^{\prime} C^{\prime}+A B C^{\prime}
\end{aligned}
$$

ROM vs. PLA

- ROM approach advantageous when
$1 \|$ Design time is short (no need to minimize output functions)
II Most input combinations are needed (e.g., code converters)
\| Little sharing of product terms among output functions
- ROM problems
|| Size doubles for each additional input
॥ Can't exploit don't cares
- PLA approach advantageous when
| Design tools are available for multi-output minimization
1 There are relatively few unique minterm combinations
| Many minterms are shared among the output functions
- PAL problems
| Constrained fan-ins on OR plane

Regular Logic Structures for Multi-level Logic

- Difficult to devise a regular structure for arbitrary connections between a large set of different types of gates
1 Efficiency/speed concerns for such a structure
\| Xilinx field programmable gate arrays (FPGAs) are just such programmable multi-level structures

Programmable multiplexers for wiring
Lookup tables for logic functions (programming fills in the table) Multi-purpose cells (utilization is the big issue)
|| Use multiple levels of PALs/PLAs/ROMs
$\|$ Output intermediate result
\| Make it an input to be used in further logic

