Detecting and Correcting Bit Errors

Some things we do in computer systems puts the integrity of data at risk.

- Storing bits as charge on capacitors (DRAM, dynamic logic).
- Storing bits with mechanical systems (hard disk, floppy disk).
- Sending bits long distances (copper, fiber, wireless networks).

Today’s Lecture

How can we design computer systems to work in the face of bit errors?

We consider digital issues only – analog techniques important, but outside of the scope of this course.
The Big Idea: Redundant Encoding

When storing or sending information, add extra bits (called redundancy).

Error Detection

- When accessing or receiving information, use the extra bits to deduce if corruption occurred.
- Trivial example: send each bit twice, if the values don’t match, there was corruption.

Error Correction

- When accessing or receiving information, use the extra bits to fix errors in the data.
- Trivial example: send each bit three times, use a voting scheme to correct single bit errors.
- All error correction has its limits. Trivial example: what if noise corrupted two of the three copies?
Detection Versus Correction

What are the tradeoffs between detection and correction?

Error Detection

+ Needs fewer redundancy bits.
 – If an error is detected, receiver requests a resend of the data. This adds latency and complexity.
 – If information was destroyed (like a DRAM flipping a bit) there is no data to resend.

Error Correction

+ Low latency, correction happens as a part of the logic for receiving the data.
 – Uses more redundancy bits.
 – If too many errors happened, data cannot be corrected, and a resend will be needed anyways.
Today’s Lecture

Detection and correction implementations.

Part I. Simple Algorithms

- Parity: Single bit detection.
- Hamming Codes: Simple error correction.

Part II. Detecting Multiple Errors

- Theory: Modulo 2 arithmetic
- Practice: Cyclic redundancy codes
Simple Error Detection

Problem: Send an N bit quantity $b_0 \ldots b_{n-1}$. Give the receiver a way to detect a single bit error.

Solution: Parity

- Send N+1 bits ($b_0 \ldots b_n$).
- Bit b_n is one if there is an odd number of ones amongst $b_0 \ldots b_{n-1}$.
- The extra bit is called the parity bit.

Computing Parity Bit

- $b_n = b_0 \oplus b_1 \oplus \ldots b_{n-1}$
- Where \oplus is the XOR function.
- Parallel data: combinatorial XOR tree.
- Serial data: XOR gate and register bit.
Checking Parity

- $Y = b_o \oplus b_1 \oplus \ldots b_n$
- If $Y = 1$ single-bit error detected.
- Do something sensible if error detected.

When to Use Parity

- Is failure mechanism a good fit for parity?
- Good example: memory array, each b_k on a different chip.
- Bad example: network port that sends all zeros if power fails!
Simple Error Correction

Problem: Send an N bit quantity $b_o \ldots b_{n-1}$. Give the receiver a way to detect and correct a single-bit error.

Hamming Codes

• Take overlapping subsets of $b_o \ldots b_{n-1}$.
• Compute one parity bit for each subset.
• Send M bits: N data bits and K parity bits.
• With enough parity bits, you can ID a flipped data bit.
• Receiver computes a checkword that is 0 (no errors) or whose value is the bit position of the error.
• Complement the bit position of the error to fix.
• R. Hamming, 1950.
Hamming Codes in Detail

Definitions

- N data bits $b_0 \ldots b_{n-1}$.
- K parity bits $p_0 \ldots p_{k-1}$.
- M total bits $c_1 \ldots c_M$.
- The c’s are numbered starting from one.

Step 1: Assign b_i’s and p_i’s to c_i

- Assign each b_i and p_i only once.
- First assign c_1, then c_2, etc.
- Assign c_i to a parity bit if i a power of two.
- Elsewise assign c_i to a data bit.
- Stop when no more data bits left to assign.
Assignment Example

Given $N = 4$: $b_o \ldots b_3$

- $c_1 = p_o$. ($2^0 == 1$).
- $c_2 = p_1$. ($2^1 == 2$).
- $c_3 = b_o$.
- $c_4 = p_3$. ($2^2 == 4$).
- $c_5 = b_1$.
- $c_6 = b_2$.
- $c_7 = b_3$. (last b_i used)

Observations

- $N = 4$, $K = 3$, $M = 4 + 3 = 7$
- For large N, $K \approx \log_2(N)$.
- This is a good thing.
Step 2: Compute Parity Bits

Recall from introduction . . .

- Take overlapping subsets of the bits.
- Compute one parity bit for each subset.

The questions:

- How to take the subsets from $c_1 \ldots c_M$?

Algorithm:

- Write c subscripts in binary.
- Subsets have a 1 in a particular bit position.
- Each subset has only one p_i.
- Set p_i to XOR of subset data bits.
Parity Computation Example

Recall $M = 7$

$c_1 = c_{001} = p_0$
$c_2 = c_{010} = p_1$
$c_3 = c_{011} = b_o$
$c_4 = c_{100} = p_3$
$c_5 = c_{101} = b_1$
$c_6 = c_{110} = b_2$
$c_7 = c_{111} = b_3$

Subsets

$\{c_4, c_5, c_6, c_7\} \iff \{p_3, b_1, b_2, b_3\}$
$\{c_2, c_3, c_6, c_7\} \iff \{p_1, b_o, b_2, b_3\}$
$\{c_1, c_3, c_5, c_7\} \iff \{p_0, b_o, b_1, b_3\}$

To Compute Parity

- XOR data bits of the subset.
- Assign to parity bit of the subset.
- Each subset has one parity bit by design.
Step 3: Correct Errors on Reception

Recall from introduction . . .

• With enough parity bits, you can ID a flipped data bit.
• Receiver computes a checkword that is 0 (no errors) or whose value is the bit position of the error.

The Question:

• How to compute the checkword?

Algorithm:

• Break data into subsets.
• If subset contains p_i, set w_i to XOR of all subset members.
• Checkword $= w_0 + 2 * w_1 + 4 * w_2 + \ldots$
• If checkword is zero, no errors.
• If checkword is nonzero, flip bit $c_{\text{checkword}}$.
Checkword Computation Example

\[c_1 = c_{001} = p_0 \]
\[c_2 = c_{010} = p_1 \]
\[c_3 = c_{011} = b_o \]
\[c_4 = c_{100} = p_3 \]
\[c_5 = c_{101} = b_1 \]
\[c_6 = c_{110} = b_2 \]
\[c_7 = c_{111} = b_3 \]

Subsets

\[(c_4, c_5, c_6, c_7) \equiv (p_3, b_1, b_2, b_3) \]
\[(c_2, c_3, c_6, c_7) \equiv (p_1, b_o, b_2, b_3) \]
\[(c_1, c_3, c_5, c_7) \equiv (p_0, b_o, b_1, b_3) \]

To Compute Checkword

\[w_2 = c_4 \oplus c_5 \oplus c_6 \oplus c_7 = p_3 \oplus b_1 \oplus b_2 \oplus b_3 \]
\[w_1 = c_2 \oplus c_3 \oplus c_6 \oplus c_7 = p_1 \oplus b_o \oplus b_2 \oplus b_3 \]
\[w_0 = c_1 \oplus c_3 \oplus c_5 \oplus c_7 = p_0 \oplus b_o \oplus b_1 \oplus b_3 \]

Checkword = \[w_0 + 2 \times w_1 + 4 \times w_2 \]
Hamming Code Epilogue

Why Does It Work?

- Uses binary code to advantage.
- If checkword not zero, a bit must be wrong.
- Each $w_i = 0$ removes some bits from suspicion.
- Whichever bit is left must be wrong.
- If a bit is wrong, only one way to make it right!

Help! I’m Confused!

- It’s normal to be confused after seeing it just once.
- Print these slides, reread.
Detecting Multiple Errors

For Use When:

- Sending packets of data over an unreliable medium.
- Most of the time, bits arrive perfectly.
- Sometimes, many bits are corrupted.
- Need to detect corruption, request a re-send.
- Parity too weak: multi-bit corruption is common.

Example Applications:

- Ethernet Packets
- Internet Protocol Datagrams
Basic Idea: Checksums

- Given a data packet of N bits.
- Compute an M bit checksum word on data
- Send M checksum bits and N data bits.
- Receiver also computes checksum on packet.
- Packet corrupt if checksums are different.
- Parity is a very weak 1-bit checksum.

Desirable Checksum Properties

- N may vary packet by packet, M is fixed.
- Algorithm should be easy to compute.
- Algorithm and M chosen to match application.
Example: Cyclic Redundancy Check (CRC)

- Used in Ethernet Packets ($M = 32$).
- Ethernet $P($undetected error$) = 1/2^{32}$
- Less than one in a billion.

The Basic Idea

- Treat data packet as an N bit number.
- Divide number by a constant.
- The “remainder” of the division is the checksum.

But Division is Slow!

- Solution: use a number system where division is fast.
- Modulo 2 Arithmetic.
Modulo 2 Arithmetic

- + is bit-wise XOR (no carries).
- - is bit-wise XOR (no borrows).
- * is bit-wise AND (no carries).
- Division uses - and * above (no borrows).

Not an Ad-hoc Scheme!

- Operations define a finite (Galois) field.
- Associative and distributive properties.
- + and * identities and inverses.
- Ops map one N bit word to another N bit word.
Modulo 2 Division
CRC Algorithm In Detail

- D is the N-bit data word to be sent.
- We compute M-bit checksum word R.
- Send concatenation: $2^M \times D + R$

Computing Checksum

- Compute $(2^M \times D)/G = Q + R/G$
- Ethernet $G = 10000010011000010001110110110111$
- Checksum is remainder R.

On Receipt

- Divide $(2^M \times D + R)$ by G
- $(2^M \times D)/G + (R/G)$
- From above: $Q + (R/G) + (R/G)$
- Rewrite: $Q + (R/G) - (R/G)$
- Remainder should be zero! If not, corrupt.
CRC Hardware

- Serial dividend flows from b box.
- Flip-flops hold 16-bit remainder R.
- 17-bit divisor $G = 10001000000100001$
- Input XOR is first and last 1.
- Two middle 1’s map to middle XORs.

Preparing Checksum

- Clear flip-flops.
- Append 16 zeros to N-bit data D
- $16 + N$ clocks to enter data.
- Remainder R sits in flip-flops.

Upon Receipt of $2^{16} \ast D + R$

- Clear flip-flops.
- $16 + N$ clocks to enter data.
- A non-zero flip-flop flags an error.
How Does It Work?

- The secret: it doesn’t work for all divisors.
- Only for numbers with “cyclic” property.
- Theoretical background needed to go further.
- Linear Feedback Shift Registers
- Also used for random number generation.

In Conclusion

- Error coding is where math meets logic.
- Modulo 2 bit-serial circuits are powerful.
- Deep mathematics behind the gates.