Fall 1999 CS150 Homework #9 Solutions

By Tina (So that’s who you bitch to when the answers are wrong)

1. Katz Chapter 11, problem 9. (35 points)

Four new instructions are added to the original instruction set given in Katz problem 11.6:

Original instruction set:

Op Code
Op Code

(Binary)
(Symbolic)
Function

00 X1 X0

ADD

R[0] := R[0] + R[X1 X0]

01 X1 X0

AND

R[0] := R[0] AND R[X1 X0]

10 00

COMP

R[0] := ~R[0]

10 01

INC

R[0] := R[0] + 1

10 10

RSR

R[1]<0> := R[1]<1>, R[1]<1> := R[1]<2>,

R[1]<2> := R[1]<3>, R[1]<3> := R[1]<0>

10 11

ASR

R[1]<0> := R[1]<1>, R[1]<1> := R[1]<2>

R[1]<2> := R[1]<3>, R[1]<3> := R[1]<3>

New Instructions:

Op Code (Binary)

Op Code

Word 1
 Word 2 Word 3
(Symbolic)
Function

1100
 Y3Y2Y1Y0

XFER

R[Y3Y2] := R[Y1Y0]

1101
 Y7Y6Y5Y4 Y3Y2Y1Y0
LD

R[0] := MEM[Y7Y6Y5Y4Y3Y2Y1Y0]

1110
 Y7Y6Y5Y4 Y3Y2Y1Y0
ST

MEM[Y7Y6Y5Y4Y3Y2Y1Y0] := R[0]

1111
 Y7Y6Y5Y4 Y3Y2Y1Y0
BRN

IF R[0]<3> = 1 THEN

PC := Y7Y6Y5Y4Y3Y2Y1Y0
[image: image1.bmp]1a.
Draw STD fragment for instruction fetch and decode. Fetch includes getting operands for instruction.

1b.
Draw the memory interface register transfer diagram. (Using Katz Figure 11.13)

NOTE:

· It’s OK to make the Abus 8-bits wide and assume that two 4-bit registers are supplying the 4 upper and 4 lower bits respectively. That would be a more efficient design.

· The AC and ALU are not important for this problem and can be left out.

· I used the figure from the book, but if you used datapath handed out in class, you’d have two MBRs in your design. That’s fine.

1c.
What new register transfer operations and micro-operations are added by these four instructions?

New RTN
New (-operations
Why?

MBR(IR0
Memory Bus (IR0
Load Op-code for all instructions.

MBR(IR1
Memory Bus (IR1
Load first operand for new instructions.

MBR(IR2
Memory Bus (IR2
Load second operand for new instructions.

PC0(MAR0
PC0(Address Bus, Address Bus (MAR0
RAM Addressed with 8-bit addresses. Putting upper 4-bits into MAR0.

PC1(MAR1
PC1(Address Bus, Address Bus (MAR1
RAM Addressed with 8-bit addresses. Putting lower 4-bits into MAR1.

IR1(PC0
IR1(Address Bus, Address Bus (PC0
For BRN instruction. Putting upper 4 bits of JUMP address into PC0.

IR2(PC1
IR2(Address Bus, Address Bus (PC1
For BRN instruction. Putting lower 4 bits of JUMP address into PC1.

IR1(MAR0
IR1(Address Bus, Address Bus (MAR0
For LD & ST instructions. Putting upper 4 bits of MEM address into MAR0.

IR2(MAR1
IR2(Address Bus, Address Bus (MAR1
For LD & ST instructions. Putting lower 4 bits of MEM address into MAR1.

2. Microcode for simple CPU control. (30 points)

Use the micro-programmed unit (MCU) handed out in class, list, in symbolic form, the microcode needed to execute the DJNZ instruction from PS 8, problem 2. Describe any necessary changes to the MCU.

NOTE: It is assumed:

1. The address must be asserted through a ‘Read’. (It must be in MAR while ‘Read’ signal is being asserted).

2. The address must be asserted through a write, ‘Write0’ & ‘Write1’. (It must be in MAR while ‘Write0’ and ‘Write1’ are being asserted).

3. The data must be asserted through a write. ((Note that the ‘Write0’ signal and the ‘Write1’ signal can’t be asserted at the same time as the ‘Y=B-1’ signal (They are produced by the same decoder and a decoder can only have one of its outputs high at one time. Since MBROUTLOAD is always asserted, the ‘Y=B-1’ result will be overwritten when the decoder output changes from ‘Write0’ to ‘Write1’. In order to keep the value in MBROUT, you need to make it so MBROUTLOAD it isn’t always ‘1’. This is a change to the MCU and is described below.

Microcode:

ROM Address
State
Instruction
Operands
Coment

100
DJ0
DO
IROUT
IR(MAR

101
DJ1
DO
Read
RAM[MAR](MBR

102
DJ2
DO
Y=B-1, MBROUTLOAD, IROUT
MBR-1(MBROUT, IR(MAR

103
DJ3
DO
Write0, IROUT
IR(MAR

104
DJ4
DO
Write1
MBR(RAM[MAR]

105
DJ5a
DO
Y=B-1

106
DJ5b
JMP
IF ‘Was NOT Zero?’ Then DJ7
IF non-zero THEN JUMP to DJ7

107
DJ6a
DO
PC+1
PC+1(PC

108
DJ6b
JMP
Instruction Fetch
Instruction Fetch

109
DJ7a
DO
PC+1
PC+1(PC

109
DJ7b
DO
PCOUT
PC(MAR

110
DJ8
DO
Read
RAM[MAR](MBR

111
DJ9
DO
IRLOAD
MBR(IR

112
DJ10
DO
IROUT, PCLOAD
IR(PC

113
DJ11
JMP
Instruction Fetch
Instruction Fetch

*ROM Address: The starting ROM address was chosen randomly.

 Changes to MCU:

1.
MBROUTLOAD (Comes from O0 (an unused output from the ROM) instead of always being ‘1’.

2.

3.
Replace ‘Y=A+B’ with ‘Y=B-1’ on last decoder of MCU.

3. Microcode for FSM emulation. (25 points)

From the schematic, we can determine the following about the MCU:

1. O7 controls whether the MUX is enabled or the OUTPUT is enabled. If O7 is high, then the microcode instruction is a JUMP instruction, and if it’s low, then the instruction is a DO (DO ‘does’ something by asserting outputs which make the datapath DO something.)

2. O6 and O5 are used to select the appropriate MUX input for a JUMP instruction. (You can think of the inputs to the MUX as jump conditions: IF AC<15> THEN JMP O[4:0]. In this case, if it is a jump instruction (O7=1), and AC<15> is ‘1’, then LOAD will be high and O[4:0] will be loaded in to the (-PC on the next clock). Remember, this only happens when O7 is high (a jump instruction).

So the JUMP instructions available to us are:

JUMP if Z to O[4:0]

JUMP if NOT Z to O[4:0]

JUMP ALWAYS to O[4:0]

3. O[4:0] is where you jump to when you do a JUMP. If the present instruction is a DO instruction, O[6:1] control what the outputs will be. Unused bits exist and have no affect.

4. Other things to note:

· MCU is using Clock and Clock. Outputs are asserted on falling edge.

· Outputs hold when processing a JUMP instruction.

Steps to produce code for the MCU:

1. STD

I’m going to follow this following flow of states though you can pretty much make any order work:

State000, State001, State010, State011, State101, State100

Label
ROM Address
Mnemonic Form
Numeric Form
Hex Data

State 000
00000
DO Output 0
0 00 00000
0x00

00001
JMP if Z to Pre 001
1 00 00011
0x83

00010
JMP to State 000
1 11 00000
0xE0

Pre 001
00011
JMP to State 001 (no-op)
1 11 00100
0xE4

State 001
00100
DO Output 0
0 00 00000
0x00

00101
JMP if Z to Pre 010
1 00 00111
0x87

00110
JMP to State 100
1 11 10010
0xF2

Pre 010
00111
JMP to State 010 (no-op)
1 11 01000
0xE8

State 010
01000
DO Output 0
0 00 00000
0x00

01001
JMP if Z to Pre 010
1 00 00111
0x87

01010
JMP to State 011
1 11 01011
0xEB

State 011
01011
DO Output 1
0 00 00001
0x01

01100
JMP if Z to Pre 101
1 00 01110
0x8E

01101
JMP to State 000
1 11 00000
0xE0

Pre 101
01110
JMP to State 101 (no-op)
1 11 01111
0xEF

State 101
01111
DO Output 1
0 00 00001
0x01

10000
JMP if Z to Pre 010
1 00 00111
0x87

10001
JMP to State 100
1 11 00000
0xE0

State 100
10010
DO Output 0
0 00 00000
0x00

10011
JMP if Z to Pre 101
1 00 01110
0x8E

10100
JMP to State 000
1 11 00000
0xE0

Timing diagram for the input Z=101101:

4. Karnaugh Maps. (10 points)

To get the simplest equation, you always want to circle the biggest groups and try to get by with the least number of circles.

4a.
F.H = ((0, 1, 5, 7) (3 variable K-map)

I’ll pick A, B, and C as my variables.

 _ _

F.H = AB + AC

4b.
G.H = ((5, 6, 7, 10, 11, 13, 14, 15) (4 variable K-map)

I’ll pick A, B, C, and D as my variables.

G.H = BD + BC + AC

RES

 IF0

 IF1

 IF2

 IF3/DE0

RESET/0(PC

RESET/

RESET / PC(MAR,

 PC+1

WAIT/

WAIT / MAR(MEMORY

 1(Read/Write

 1(Request

 WAIT/

 MAR (MEMORY

 1 (Request

 1 (Read/Write

WAIT / MEM(MBR

WAIT/

WAIT / MBR(IR0

EXECUTE:

 ADD

 AND

 COMP

 INC

 RSR

 ASR

IR0<1>IR0<0> WAIT / MBR(IR2

WAIT/

WAIT / MEM(MBR

 WAIT/

 MAR (MEMORY

 1 (Request

 1 (Read/Write

WAIT / MAR(MEMORY

 1(Read/Write

 1(Request

WAIT/

IR0<3>IR0<2>/

 PC(MAR,

 PC+1

WAIT/

IR0<1>IR0<0> WAIT / MBR(IR2

C

 IF6/DE1

 IF5

 IF4

WAIT / MEM(MBR

 WAIT/

 MAR (MEMORY

 1 (Request

 1 (Read/Write

WAIT / MAR(MEMORY

 1(Read/Write

 1(Request

WAIT/

IR0<1>IR0<0> WAIT / MBR(IR2

 IF8/DE2

 IF8

 IF7

EXECUTE:

XFER

_____ ______

IR0<1>IR0<0> WAIT/

	MBR(IR1

WAIT(IR0<1> + IR0<0>)/

 MBR(IR1

 PC(MAR,

 PC+1

EXECUTE:

 LD

 ST

 BRN

 IR0

 IR2

 IR1

 PC

(8 bits

 wide)

MAR

(8 bits

 wide)

 MBR

Memory Bus

Address Bus

4

8

Result Bus

Memory

Address

Bus

4

Memory

Data

Bus

Zero?

DFF

Was Not Zero?

 Was Not Zero?

 IR<15>

 IR<14>

 “1”

Jump condition Selector in MCU

“0”

000

[0]

“1”

001

[0]

“10”

100

[0]

“11”

010

[0]

“101”

101

[1]

“110”

011

[1]

_

Z

_

Z

_

Z

_

Z

_

Z

_

Z

Z

Z

Z

Z

Z

Z

AB

00 01 11 10

 0 2 6 4

 1 3 7 5

 00 01 03 04 05 06 12 13 0E 0F 10 07 08 09 0A 0B 0C 0E 0F 10 11

 Address:

 (In HEX)

 CLK

 Z

 OUT0

Load (PC

 OUT CE

 ROM 7

 0

 1

1 0 0 0

1 0 1 1

AB

CD

00 01 11 10

 0 4 12 8

 1 5 13 9

 3 7 15 11

 2 6 14 10

 00

 01

 11

 10

0 0 0 0

0 1 1 0

0 1 1 1

0 1 1 1

4

