11/8 & 11/10

CS150

Section week 11

This week: Karnaugh maps (HW 9, Q4), µ-programming (HW 9, Q3)
1. K-maps
Making K-maps.

 Terms:

Minterm: SOP (Sum Of Products). Equation you get when you circle 1s in a K-Map.
Implicant: Anything you can circle in a K-Map. Can be single 1. Can be the biggest group, too.
Prime implicant: The biggest circle drawable around an implicant.
Essential implicant: A prime implicant that has at least one implicant that isn’t contained in another circle.
Maxterm…: POS (Product Of Sums). Equation you get when you circle 0s in a K-Map.

Simplify: _ _ _ _ _ _ _ _ _

OUT = XYZ + XYZ + XYZ + XYZ + XYZ (________________________

using K-maps.

 _

2. Glitches and K-maps:

K-map simplified equation: OUT = B C + A C

Equation drawn in gates:

Can a glitch occur on the 110 (111 transition? Yes.

 Timing: (A=B=1 and delays are gate delays)

 C

 A’

 C’

OUT

How can you fix it using a K-map? Add a circle which contains the transition path.

3. Microprogramming

Microprogram the control unit below to implement a rising edge detector. Emulate a Moore type FSM. The clock to the control unit is twice the clock of IN (IN clock and the controller clock are synchronized.)

Some questions before we start:

Where is the (-program located? In the ROM
Can this be reused for different (-programs? It’s in a ROM. It can’t be re-written. In other words, the micro-controller will run a fixed program and can’t be re-programmed (easily anyways…).
What are the instructions for this microcode control unit?

Instruction

Bit: 7 6 5 4 3 2 1 0

DO OUTPUT OUT

 0 X X X X X X OUT

LOAD(IN) Address

 1 0 X X X Address

LOAD(IN) Address

 1 1 X X X Address
Remember the decode stage in the STD for the computer datapath we did in class. It branches 5 ways. How many directions can this controller branch on one instruction? Only 2
What would it need to do if it had to go to multiple destinations on one instruction?

Can’t. You have to use multiple (-instructions to take care of multiple branches.

Write the microcode:

STD

	Address
	Mnemonic form
	O7
	O6
	O[5:0]

	0
	DO OUTPUT 0
	0
	X
	XXXXX0

	1
	JMP(IN) 0
	1
	1
	XXX000

	2
	DO OUTPUT 1
	0
	X
	XXXXX1

	3
	JMP(IN) 0
	1
	1
	XXX000

	4
	DO OUTPUT 0
	0
	X
	XXXXX0

	5
	JMP(IN) 0
	1
	1
	XXX000

	6
	DO OUTPUT 0
	0
	X
	XXXXX0

	7
	JMP(IN) 6
	1
	0
	XXX110

Possible problems with this program:

OUT will be asserted after one

(-controller clock cycle. Maybe not

a problem but something to notice.

The problems that I presented it with

in section are all solved by adding a

forth state. I don’t see any problems

with the 4 state based program.

CLK

CLK

Micro

Program

counter

C

OUT

State 00

State 00 State 11

State 01

State 11 State 00

0 1

0 1

1

1

 11

“1”

 [0]

 10

“11”

 [0]

0

0

1

State 00

State 01

State 10

State 11

0

1

0

 00

“0”

 [0]

 01

“01”

 [1]

RESET

BRNtaken BRNnot taken

STORE

LOAD

ADD

0

1

 Output Register

 CE

O0 D0 Q0 OUT

A’

C’

Step 3: Equation

__ __

OUT = Y + X Z

Step 2: K-Map

XYZ 	OUT

000	1

001	1

010	0

011	0

100	1

101	1

110	1

111	0

Step 1:

 Truth table

 XY

Z 00 01 11 10

0 1 0 1 1

1 1 0 0 1

RESET

A

1 0 0 1 1 0 0 1

0 0 1 1 0 0 1 1

1 1 1 1 1 1 1 1

1 1 0 1 1 1 0 1

1 0 0 1 1 0 0 1

0 0 1 1 0 0 1 1

1 1 1 1 1 1 1 1

1 1 0 1 1 1 0 1

ABCD	OUT

0000	1

0001	0

0010	1

0011	1

0100	0

0101	0

0110	1

0111	1

1000	1

1001	1

1010	1

1011	1

1100	0

1101	1

1110	0

1111	1

 AB

CD

8x8 ROM

A2 O7

A1

 O[6:0]

A0

 LOAD

O2 D2 Q2

O1 D1 Q1

O0 D0 Q0

O6

00

	01

	11

	10

00

01

11

10

00	01	11	10 00 01 11 10	

IN

__

IN

EN

State 00

State 00 State 10

B

 AB

C 00 01 11 10

0 0 1 1 0

1 0 0 1 1

0 1

1 0

Branch diagram:

Left child is branch. Right child is natural path when counter counts up without branch.

