[image: image1.png]B EY

10/26 & 10/28

CS150

Section week 9

This week: RTN (Register Transfer Notation) Review & Microoperations, Computer Data Path (HW9),

1. RTN review, (-operations
 [image: image2.png]oLk

cLK

T+

oLk

mEs

ENTMP ETMP
I

 a. In the notes for the 5th section (6th week), we saw what register transfers and control signals were

 necessary to calculate (X+Y)*Z when using the datapath below.

What are the register transfers and control signals to add A & B and put the sum into TMP?

RTN

(-operations
 Control signals

[image: image3.png]B EY

[image: image4.png]oLk

cLK

T+

oLk

mEs

ENTMP ETMP
I

 b. RTN describes transfers of data from one __________ component to _____________ component.

Each Register transfers takes __________ clock cycle(s).

For one register transfer there may be ______________ control signal(s) that may need to be set.

RTN

(-operations

Control signals

2. Computer datapath (Just another datapath like the one above...)

a. The three steps to carry out an instruction on a computer:

b. What are the differences between the model that the

book is basing its STD on and the handout given in lecture?

Four step handshake for book’s memory model:

 Write

 Read

Cycle 1: Wait high.

Request

 Request asserted.

 Put write data on bus.
Read/Write

Cycle 2: Wait goes low.

 Read data latched by circuit.
Data

Cycle 3: Request goes low.
Cycle 4: Wait goes high.
Wait

c. Instructions.

 Format:

OP Codes:
Instruction

Action:

00

LOAD XXX

Memory[XXX] (ACC

01

STORE XXX

ACC (Memory[XXX]

10

ADD XXX

ACC + Memory[XXX] (ACC

11

BRN XXX

If ACC < 0 ACC (PC

Address: Address in memory.

What does the instruction 0x000F do?

d. Instructions & Memory contents
So... Let’s do X*Y = PRODUCT.

Use the code:

Mult(X, Y) {

 int i = X, minus1 = -1, product = 0, count = Y;

 for (; count (0 ; count--) product += i;

}

_i
data X
i = X
40
X

_count
data Y
count = Y
41
Y

_minus1
data 0xffff
minus1 = -1
42
0xffff

_product
data 0x0000
product = 0
43
0

_mult
LOAD _count
ACC = count
44
0x0029

ADD _minus1
ACC = ACC – 1
45
0x802A

STORE _count
count = ACC
46
0x4029

BRN _done
if count < 0 goto “done”
47
0xC035

LOAD _i
ACC = X
48
0x0028

ADD _product
ACC = ACC + product
49
0x802B

STORE _product
product = ACC
50
0x402B

LOAD _minus1
ACC = -1
51
0x002A

BRN _mult
if ACC < 0 then goto “mult”
52
0xC02C

_done

…
53
????

Problem started in Wednesday section:

What are the register transfers, (-operations, and signals for a new instruction:

ADDMEM XXX
RAM[XXX] + ACC (RAM[XXX]

Use the datapath handed out in class.

There were already 4 instructions defined for the datapath handed out in class so adding this instruction would mean there would be a total of 5 instructions in the instruction set. In the instruction format we only have 2 bits in the opcode. This means that we’d need another bit in the opcode if we were to still implement the other 4 instructions in order to have a unique opcode for each instruction. I’m not going to worry about that here. Let’s just assume it’s replacing ADD. Assume instruction ahs already been fetched.

RTN

(-operations

signals

IR<13:0> (MAR

IR (ABUS

IROUT

ABUS(MAR

MARLOAD

RAM[MAR] (MBRIN
RAM[MAR] (DataBus
CS.L

DataBus (MBRIN

MBRINLOAD

MBRIN + ACC (MBROUT
MBUS (RBUS

Y=A+B (ALU Op

RBUS (MBROUT

MBROUTLOAD

WE.L

MBROUT (RAM[MAR]
MBROUT (DataBus

MBROUT

DataBus (RAM[MAR]
WE.L, CS.L

(finish write cycle. Avoid bus conflicts

WE.L

and wierd writes by turning off CS.L first

Another way:

RTN

(-operations

signals

IR<13:0> (MAR

IR (ABUS

IROUT

ABUS(MAR

MARLOAD

RAM[MAR] (MBRIN
RAM[MAR] (DataBus
CS.L

DataBus (MBRIN

MBRINLOAD

MBRIN + ACC (MBROUT
MBUS (RBUS

Y=A+B (ALU Op

RBUS (MBROUT

MBROUTLOAD

WE.L, CS.L((OK since address

 is already ready.)

MBROUT (RAM[MAR]
MBROUT (DataBus

MBROUT

DataBus (RAM[MAR]
WE.L

PS. CS.L(means falling edge transition.

Data

Data

The model the book uses is for a memory that may not read/write in a consistent amount of clock cycles. The model that we’re using in lecture uses a RAM for its memory. RAM will always require the same amount of clock cycles for a read/write.

The way the book has the circuit deal with variable read/write times is by using a 4 step handshake (on next page). The circuit and memory converse using this 4 step handshake.

Instruction fetch, decode, execute

T

A + B (TMP 			 A + B (BUS 	 T = 0 (One signal for both tristate buffers)

				 BUS (TMP		 ENTMP = 1

multiple

one

another memory

memory

� EMBED PBrush ���

Answers in red.

A + B (TMP 			 A + B (BUS 	 T+ = 0, T* = 1 (= TTMP, TX = TY = TZ)

				 BUS (TMP		 ENTMP = 1

 Label Operation Comment Address Memory value

Address

OP Code

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

LOAD 0xF

*An aside:

Say we change the datapath to the one on the right. Note that the TBUF on the

output of the TMP register has been changed to an EBUF and assume TAZ<TZA for both tri-state buffers. Can we reduce the number of control signals for the same calculation?

� EMBED PBrush ���

_970753934

_970756282

