[image: image1.png]— a
. v CLE
XX ENE
|
imE
LK

T+

oLk

ENTMP TTMP

11/2 & 11/4

Section week 10

This week: Synchronous design rules (HW10), Microprogramming (HW10)

1. Synchronous design rules
What are they (Right off of the handout):

1.
Use only one clock (Tcko & skew)
2.
Synchronize inputs (May bounce up to 100 ms. Use FFs.)
3.
Never gate clock (Glitches & delays)
4.
Avoid clock skew (BUFGS)
5. Avoid asynchronous control signals (Asynchronous RESET, etc.)
6.
Don’t use coupled Mealeys (Don’t build own latches)
7.
Avoid set-up violations. (Slow clock, reduce logic…)
[image: image2.png]— a
. v CLE
XX ENE
|
imE
LK

T+

oLk

ENTMP TTMP

2.
Microcode for CPU control.

Using the micro-programmed control unit on the next page as a starting point, design a MCU for controlling the above datapath for the following instructions (You don’t need to program the control unit):

LOAD X (TMP
LOAD Y (TMP

MOVE TMP (A
MOVE TMP (B

A + B (TMP

Things we need to find: Jump conditions, output, ROM width, ROM depth, CTR bits, MUX select lines.

To find: Output

**Goal: To make the microcode instruction as narrow as possible.

To do this:

First, group datapath control signals. (Look for groups of signals that can only have member asserted at a time.)
Sources (Values put ON bus): (TX, TY, T+, TTMP (
Destinations (Where values from bus are put): (ENA, ENB, ENTMP (
So, since only one of each group will be asserted at a time, let’s use decoders (The same idea as the MCU that prof. Fearing designed in lecture for the computer datapath.):

To find DO instruction format/width:

This tells you how many bits you’ll need for a DO instruction. You’ll need 4 for the decoders and one for the enable line (total: 5 bits):

Enable
Soucre bit 1
Source bit 0
Destination bit 1
Destination bit 0

But until we find the format for the JUMP instruction we won’t know if this is a sufficient width for the ROM or not (the maximum possible width of an instruction is the minimum width of the ROM).

To find JUMP instruction format/width:

We need to find the number of selector bits needed and the bits in the counter.

To find the number of condition selector lines:

We need to find what jumps we may need to do. So, let’s

Do two things: Give the instructions for the datapath opcodes and then

Plan our jumps using a branch diagram like the one on the next problem.

Assume there’s an IR someplace with the datapath instruction in it.

Datapath Instruction
OpCodes (In IR<15:13>)

LOAD X (TMP
000

LOAD Y (TMP
001

MOVE TMP (A
010

MOVE TMP (B
011

A + B (TMP

100

So, it looks like we want to be able to branch on:

IR<15>, IR<14>, IR<13>, and always. That means there

Are 4 inputs to the MUX and 2 selector lines are necessary.

To find the number of bits for the counter:

 The number of bits in the counter is the same as the number of address lines to the ROM. The next information gives you the depth of the ROM:

Next, figure out how wide each microcode instruction needs to be (In other words, how wide the ROM needs to be.) assuming a maximum of 64 total (-instructions. Also, assume there’s an IR someplace and instructions fetched by datapath are 16 bits.

If there are a maximum of 64 (-instructions then the depth of the ROM will be 64 (= 26) and have 6 address lines.

To find JUMP instruction format/width revisited:

Now you have enough information to figure out how many bits you’ll need for a JUMP instruction. You’ll need 2 bits for the MUX selector, 6 bits for the counter and one for the enable line (total: 9 bits):

Enable
MUX selector bit 1
MUX selector bit 2
Addr 5
Addr 4
Addr 3
Addr 2
Addr 1
Addr 0

This (9 bits) is wider than the DO instruction (5 bits) so this becomes the minimum width of the ROM. 9 bits isn’t a real popular width for ROMs so in this case let’s say we combine a 64x1 ROM and a 64x8 ROM to give us our 9 bits… (Don’t worry about this. It’s OK to assume it behaves in a way that is indiscernable (sp?) from a 64x9 ROM. hmmmm. “MS Word” doesn’t like that spelling... Anyway, it’s not discernable from a 64x9 ROM). So, now our final (-controller unit!

PS. The DO instruction format:

Enable
spare
Spare
spare
spare
Source bit 1
Source bit 0
Destination bit 1
Destination bit 0

2. Microprogramming

Microprogram the control unit below to implement a rising edge detector. Emulate a Moore type FSM. The clock to the control unit is twice the clock of IN (IN clock and the controller clock are synchronized.)

Some questions before we start:

Where is the (-program located? In the ROM
Can this be reused for different (-programs? It’s in a ROM. It can’t be re-written. In other words, the micro-controller will run a fixed program and can’t be re-programmed (easily anyways…).
What are the instructions for this microcode control unit?

Instruction

Bit: 7 6 5 4 3 2 1 0

DO OUTPUT OUT

 0 X X X X X X OUT

LOAD(IN) Address

 1 0 X X X Address

LOAD(IN) Address

 1 1 X X X Address
Remember the decode stage in the STD for the computer datapath we did in class. It branches 5 ways. How many directions can this controller branch on one instruction? Only 2
What would it need to do if it had to go to multiple destinations on one instruction?

Can’t. You have to use multiple (-instructions to take care of multiple branches.

Write the microcode:

STD

Address
Mnemonic form
O7
O6
O[5:0]

0
DO OUTPUT 0
0
X
XXXXX0

1
JMP(IN) 0
1
1
XXX000

2
DO OUTPUT 1
0
X
XXXXX1

3
JMP(IN) 0
1
1
XXX000

4
DO OUTPUT 0
0
X
XXXXX0

5
JMP(IN) 0
1
1
XXX000

6
DO OUTPUT 0
0
X
XXXXX0

7
JMP(IN) 6
1
0
XXX110

Possible problems with this program:

OUT will be asserted after one

(-controller clock cycle. Maybe not

a problem but something to notice.

The problems that I presented it with

in section are all solved by adding a

forth state. I don’t see any problems

with the 4 state based program.

1

0

 11

“1”

 [0]

 00

“0”

 [0]

Micro

Program

counter

CLK

Width of buses & depth & width of ROM.

LOAD

D2_4

Jump conditions.

Condition

selector.

CLK

Condition

selector.

Jump conditions.

RESET

?x? ROM

LOAD

Output

Width of buses & depth & width of ROM.

EN

RESET

State 11 State 00

State 00 State 11

State 01

State 00

State 00

State 01

State 10

State 11

Branch diagram:

Left child is branch. Right child is natural path when counter counts up without branch.

State 00 State 10

State 00

0

CLK

CLK

 Output Register

 CE

O0 D0 Q0 OUT

RESET

8x8 ROM

A2 O7

A1

 O[6:0]

A0

 LOAD

O2 D2 Q2

O1 D1 Q1

O0 D0 Q0

O6

1

0

BRNtaken BRNnot taken

IN

__

IN

EN

STORE

LOAD

0

1

1

ADD

Solutions are in red.

 01

“01”

 [1]

 10

“11”

 [0]

?x? ROM

RESET

� EMBED PBrush ���

0

1

EN

TX

TY

T+

TTMP

ENA

ENB

ENTMP

NOOP

D2_4

EN

EN

2

2

0 1

0 1

0 1

1 0

1 0

IF

1 0	 1 0

1 0

Move TMP Move TMP

 (B (A

JMP(Always)IF JMP(Always)IF

 Load Y Load X

 (TMP (TMP

JMP(Always)IF JMP(Always)IF

JMP(IR<14>)

 JMP(IR<15>)

JMP(IR<13>) JMP(IR<13>)

A+B(TMP

JMP(Always)IF

IF

IF

IF

IF

EN

IR<15>

IR<14>

IR<13>

 “1”

2

2

EN

EN

ENA

ENB

ENTMP

NOOP

D2_4

TX

TY

T+

TTMP

D2_4

2

IR<15>

IR<14>

IR<13>

 “1”

Width of buses & depth & width of ROM.

LOAD

CLK

RESET

64x? ROM

6

EN

6

6

6

2

IR<15>

IR<14>

IR<13>

 “1”

EN

2

2

EN

EN

ENA

ENB

ENTMP

NOOP

D2_4

TX

TY

T+

TTMP

D2_4

8

LOAD

CLK

RESET

64x9 ROM

 O8

O[7:0]

2

O[5:0]

O[7:6]

O[3:2]

O[1:0]

_971479466

