







CS150 









Week 8, lecture 1 

Covers:

1) Number systems

2) Computer datapaths

3) Addition

4) Hardware

1) Number systems


S/M ( (Sign)(Magnitude)

0, 1, 2, 3 , 0, -1, -2,-3      What to do about decimal?    

1’s complement ( X = 2n – 1 – X
0, 1, 2, 3, -3, -2, -1, 0      2 zeros


Addition simple. Easy to ??
2’s complement ( X* = 2n – X
0, 1, 2, 3, -4, -3, -2, -1     Harder to connect (a little)
Addition easy


2)
Computer datapaths

Fig. 11.4, 11.13


Also in book…STT:


3)
Addition

Overflow/Underflow

Representation of negative numbers

Hardware

How do you add (say you only have 4 bits.):

  
5


5


-5


-5


7


-7


7


-7

          --------      
                          ------                                    -------                                --------


12


-2


2


-12

      Overflow.
                           OK

        Same as

     Underflow 


Can’t represent 12
   Subtract smaller 
      7 – 5 = 2

Can’t represent -12

     with 4 bits
           from larger and negate


                     with 4 bits

Addition sign rules for A + B = C:


A & B same sign: 
Add and C’s sign is the same as A & B’s.


A & B different signs: 
Subtract smaller number from larger number.





Use sign of the bigger of  |A| & |B|  

Sign/Magnitude        Represents –(2n-1-1) to +(2n-1-1)
n-Bit number.

n = 4 : 
-7 to 7

n = 8 : 
-127 to 127

n = 32 : 
-2 billion to 2 billion


   1st bit is sign bit. 1 ( negative


# of bits        1         n-1



  0 ( positive

X = Xn-1Xn-2Xn-3…X1X0

0100 = 4

         ___

- X = Xn-1Xn-2Xn-3…X1X0

1100 = -4

Problem: 2 zeros. 0000 & 1000

1’s complement 

Represents –(2n-1-1) to +(2n-1-1)
X = Xn-1Xn-2Xn-3…X1X0

0100 = 4

         __   __  __      __  __

- X = Xn-1Xn-2Xn-3…X1  X0

1011 = -4

Problem: Still 2 zeros. 0000 & 1111

Note symmetry.  0000 (( 1111,   0100 (( 1011…

2’s complement 

Represents –2n-1 to +(2n-1-1)
X = Xn-1Xn-2Xn-3…X1X0

0100 = 4

         __   __  __      __  __

- X = Xn-1Xn-2Xn-3…X1  X0  + 1
1100 = -4

No 2 zero problem!

3 = 0011

-3 = 1100 + 1 = 1101

0 = 0000

-0 = 1111 + 1 = 0000

-6 = 1010
--6 = 0101 + 1 = 0110

-8 = 1000
--8 = 0111 + 1 = 1000 = -8!!!!! ERROR!!!   Why?

      
000  
001 
010  
011  
100  
101  
110  
111


Sign/Mag            
0
1
2
3
-0
-1
-2
-3    

1’s Comp
0
1
2
3
-3
-2
-1
-0  Note symmetry  2 (( -2











               010 (( 101
2’s Comp
0
1
2
3
-4
-3
-2
-1 Note 1xxx = -(2n-1 – xxx)

          





Most







negative

Addition revisited:

Sign/Mag: Same as decimal 



   001
                  110    (-2)

    111  (-3)



+ 011

+ 011    (+3)

+  010  (+2)

                                000
                  001    (+1)
    
    101   (-1)

                         Overflow




1’s Complement: Positive numbers ( No problem


-2
   1101
 (-2)

    1110  (-1)


+1
+ 0001
 (+1)

+  0010  (+2)

               -1              1110
 (-1)
    
    0000   (0)






?????????????  Why? End around carry
1’s complement is painful to implement in hardware:





If we just shifted the negative number right we’d get rid of the end-around-carry problem. 

But shifting the negative number right just gives us 2’s complement!!!!

-2
1110

1111
-1

 1
0001
 
0010
 2
-1
1111

0001
 1

Which are the correct results…

Overflow in 2’s complement:
Cin n-1 = Coutn-1
Why?:


0
1
2
3
-4
-3
-2
-1




Overflow (
(Add to make number bigger than 3. Carry-in makes it negative. Can’t be carry out.)

( Underflow 

(Add to make number smaller than –4. No carry makes it positive. Carry-out is guaranteed )


Either one of these gives a top bit that tells you whether there’s been overflow.

Note:

   Positive numbers are the same in all systems.

   Sign/Mag and 1’s complement have 2 zeros (bad).

   Sign/Mag is hard to make adders (bad).

   2’s complement is a little harder to negate (bad).

4)
Hardware

half-adder:







Full adder


Adder/subtracter

A + B

          _

A + ( B + 1 )




Delays: Say all gates have a delay of 5ns.


Then:

  tAS = 25

  tAC = 35

  tCS = 

This disagrees with Katz: Is carry-in (C0) zero?

Note: Why would not want to make a 64 bit adder this way? (Hint: How does the delay increase per bit?)







































































































Si











Ci+1





      Ai


      Bi 


      Ci





Overflow/Underflow





An-1


B n-1





A








B





 --





A








B





I


R





P


C











S3





A3   B3





Full


Adder











S2





A2   B2





Full


Adder











S1





A1   B1





Full


Adder





Cout





Cin





S0





A0   B0





Cin





         __


Add/sub





   4





   4





   4





Full


Adder





OV (overflow?)


NEG (Negative?)


CO (Cout)


Sum





          A








B


_


B





 +





Si











Ci+1





      Ai


      Bi 


      Ci





S








C





A


B 





M


U


X





An-1


B n-1





nth bit





n-1





M


U


X





M


A


R











RAM





A


B





 +





A>B





M


B


R





ACC





ALU





Not


taken





SAME





SAME





Branch





Store





Load





Jump





Add





Increment


PC





Fetch











RAM





MAR





IR





PC





M


B


R





ACC





ALU





000 	001 	010 	011 	100 	101 	110 	111 	000 	001 …


    


                  X > 0			1’s Comp:     2n-1-X			2n


				2’s Comp:     2n-X	2n-1








