Multiplier

Project overview video

DRAM

textbook
\[
\begin{array}{c}
0111 \\
1101 \\
0011 \\
0000 \\
0111 \\
0111
\end{array}
\]

\[
\begin{array}{c}
a \\
+ n \\
\end{array}
\]

\[
\begin{array}{c}
\text{ delays: } 3W \text{ ripple} \\
\text{ trick 1: Booth} \\
0.111 = 7 \\
1000 \div \\
-0001 = -1 \\
\text{ recode strings of 1s at a time odd/subtract} \\
\Rightarrow \frac{1}{2} \text{ as many odder}
\end{array}
\]

\[
\begin{array}{c}
\text{ trick 2: carry save}
\end{array}
\]
Video
1927 Philo T. Farnsworth, San Francisco
1941 US 525 line BW standard

back porch

front porch

a line on screen

1 line on screen

H-sync (V, H)

30 fps (interlaced) 60i 525i

30 ms / 525 lines

= 60 ms / line

Filament focus

pixel

V-sync H-sync

phosphors

electron beam

turn off gun on horizontal return (H-synch)

start at top on vertical return (V-synch)
Color! Backward compatibility!

Composite Video
- modulate the analog B/W signal @ 3.58 MHz
- DC value is luminance (Y)
 5th & 6th components are Hue and Saturation
 (U) (V)

Component analog interface
R & G & analog, W/ blanking.
DVI Digital Video I
R & G &
 (differential signals) bit rate is 10x clock rate
 CLK = 25-165 MHz & clock recovery
H,V on blue
HDMI

1024x768 1 MPix/frame
720x1080 2 MPix/frame.
 3 colors, 8 bits/color = 24 bit/pix

120 fps/sec
240 M pixel/sec.
720 MB/s
~ 5 Gbps

Chromed Clip

DVI

Serial control

Reserved

need 2 cycles of 17.5 to fill 3B color/pixel