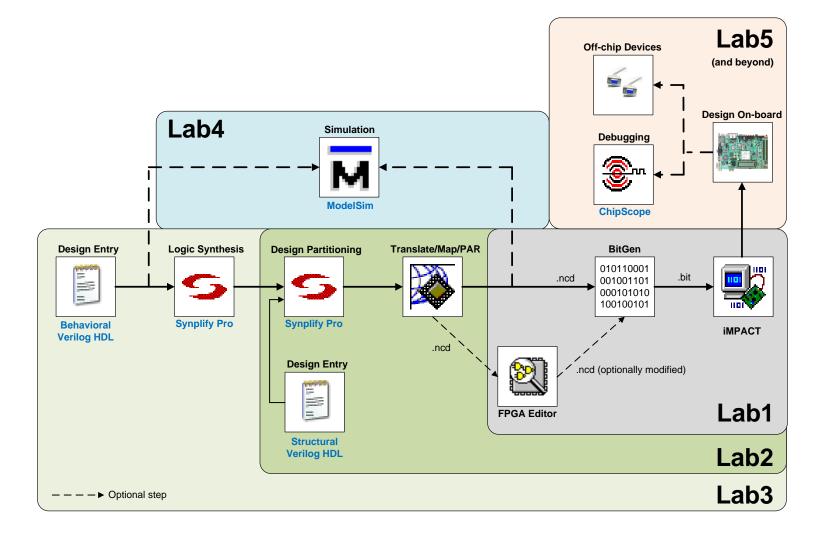
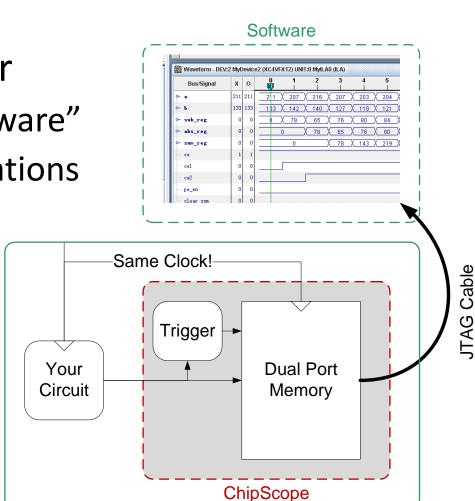
UART Adapter (Mini-Project)

UCB EECS150 Fall 2010 Lab Lecture #5


Agenda

- The entire CS150 CAD flow
- A new debugging tool (ChipScope)
- Lab 5 is to be done in pairs

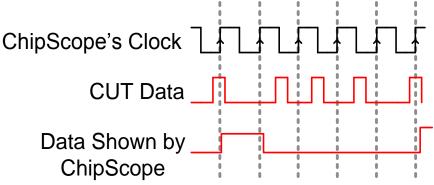
Questions?


- Lab 5 overview
- Design reviews

Where we are and why

New tool : ChipScope

- In-System Debugger
 - "ModelSim in hardware"
 - But has many limitations
- Samples signals on clock edge
- Shows only a few cycles
- Trigger-based



FPGA

(1)

ChipScope

- Is not "Magic"
 - Uses block memories on the FPGA to save the value of a signal. Saves several cycles after triggered (a pre-determined input pattern occurs)
 - Software reads and displays the saved trace
- Know its limitations!
 - Expensive Chi
 - Can affect timing
 - Gives limited visibility

ChipScope

Compared to ModelSim:

- ModelSim
 - High visibility (shows any, or every signal in the design).
 - Quick turnaround for debugging
 - **Only a simulation** (not guaranteed to work in hardware)
 - Will not show all bugs
- ChipScope
 - Shows values observed in hardware (the real deal)
 - **<u>Samples</u>** the data using a clock
 - Requires a complete tool cycle for debugging
 - Low visibility (shows only a small number of signals)

USE BOTH!

New Policy (Lab 5 and Project)

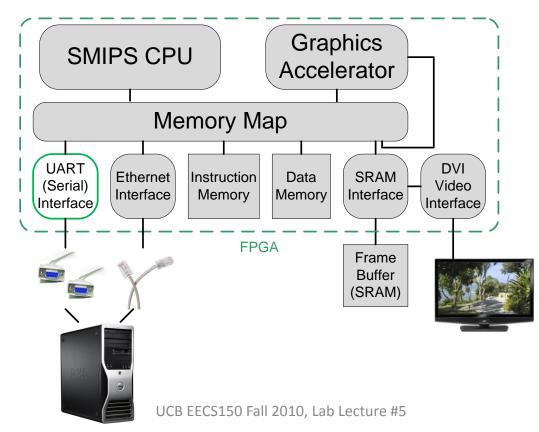
- You get two weeks for this lab.
 - A design document must be shown 1 week before check-off in your lab section.
 - Design review will be on the week of the 28th.
 - Both partners must be present.
 - Be prepared to defend your design
 - This is a part of your grade
 - Stay tuned (detail in a few slides)
- Pick a partner for Lab 5!

Lab 5 is a Partner Lab!

- Find someone to work with!
- Newsgroup can be used for match-making
- Can pick a different partner for the project

Questions?

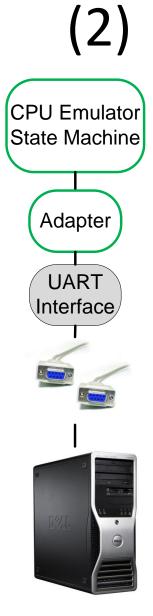
- CS150 CAD Toolflow
- ChipScope, ModelSim
- Partnerships for Lab 5, Project


• Anything else?

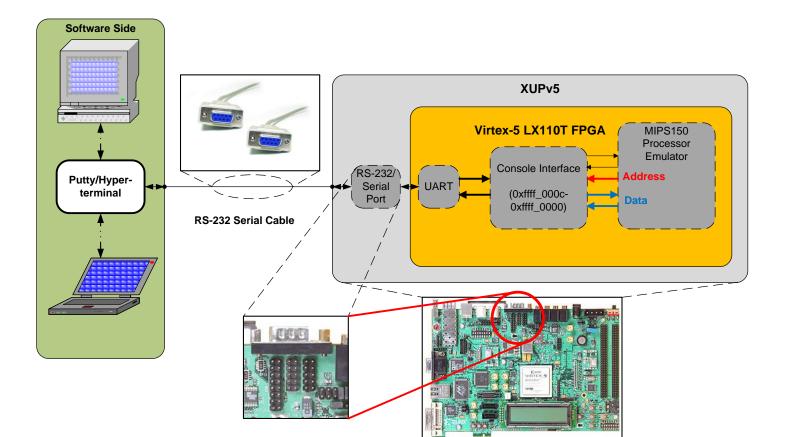
Lab 5 (Mini-Project)

(1)

Small part of the project

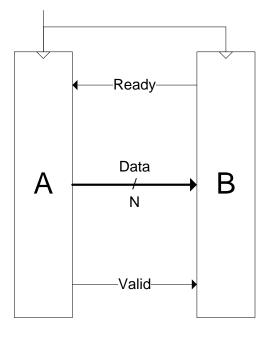

UART interface and a little something to test it

Lab 5 (Mini-Project)


- Use the entire toolflow
 Labs 1-4 taught you how
- Learn to use a handshake
- Build a state machine to mimic a CPU

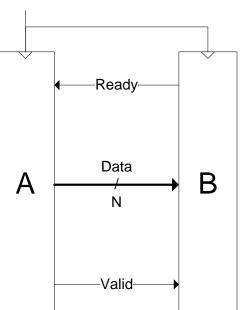
 To test the UART Interface
- We give you a UART module
 Understand it intimately
- Practice creating design documents

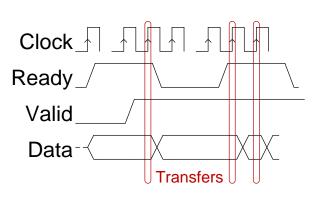
Lab 5 (Mini-Project)



Ready-Valid Handshake

- Synchronous flow control
 - Synchronizes the flow of data (within one clock domain)
- Creates a stream abstraction


Other handshakes exist


(1)

Ready-Valid Handshake

- A transfer from A to B occurs when:
 - A positive edge of the clock arrives
 - and B is asserting Ready
 - and A is asserting Valid
- No sequence requirements
- Upon a transfer:
 - B may look at the Data (save, etc.)
 - A must either:
 - de-assert valid
 - Expose the next Datum

2)

Procedure

- 1) Read the specification
- 2) DO NOT WRITE ANY VERILOG YET!
- 3) Draw a *very* high-level block diagram (be neat and name everything)
- 4) Expand blocks into new diagrams until you understand all details.
- 5) Find design flaws and repeat steps 1-4.
- 6) Think of ways to verify (test) the design.
- 7) Show your design to the TAs. Be prepared to defend it.
- 8) Now implement and verify the design

Design Documents

- This will take some time
 - Detailed enough for someone else to implement
 - Show structure and function (no screenshots)
 - Use hierarchy and omit detail (no mess o' wires)
 - Xfig, OmniGraffle, Visio, etc. (no MSPaint please)
 - Document all optimizations and hacks thoroughly
- A good design document will make implementation and debugging easy
 - Else you will pull an all-nighter.

Design Documents

• Graded out of 3 points:

Past CS150 designs deserve a 1. Many commercial datasheets deserve a 0.

Acknowledgements & Contributors

Slides developed by Ilia Lebedev & John Wawrzynek (2/2010).

This work is based in part on slides by: Ilia Lebedev, Chris Fletcher (2008-2009) Greg Gibeling (2003-2005)

This work has been used by the following courses:

- UC Berkeley CS150 (Fall 2010): Components and Design Techniques for Digital Systems