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Agenda

• Logic Synthesis

• Behavioral Verilog HDL

• Blocking vs. Non-Blocking

• Administrative Info

• Lab #3: The Combo Lock

• FSMs in Verilog HDL
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Logic Synthesis

• Allows designing at a high level

– The tool handles details

• Very good at small-scale optimization

• Synthesis tool is good at small circuits

– Don’t let it design things you can’t

– This is not software
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Behavioral Verilog                       (1)

• Specifies what a circuit does

– Not how it is built

• Most common constructs:

– “always @ …”

• always @ *

• always @ (posedge Clock)

– assign Y = …
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Behavioral Verilog                       (2)

• always @ *

– Used to describe combinational logic.

– Can cause the nastiest errors

• Make sure no latches are generated

• always @ (posedge Clock)

– Used to infer a register

– Keep these nice and short

• Even an accumulator is too much
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Wire vs. Reg

• Wire

– Logical connection of circuit elements

– Cannot be assigned in an always block.

• Reg

– NOT a Register

– A variable used in a circuit description.

– Can be  assigned in an always block.
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Blocking vs. Non-Blocking        (1)

• Blocking assignment “=”

– Guarantees sequential assignment

– Often costs unwanted hardware

– ONLY use in “always @ *”

• Else simulation and synthesis won’t match

• Non-Blocking “<=”

– All assignments happen simultaneously

– ONLY in “always @ (posedge Clock)”
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Blocking vs. Non-Blocking        (2)
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always @ ( * ) begin

b = a;

c = b;

end

always @ (posedge Clock) begin

b <= a;

c <= b;

end

C = B = A

B = Old A
C = Old B

Verilog Fragment Effect



Lab #3: The Combo Lock          (1)
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• Used to control entry to a locked room
4bit, 2 digit combo (By Default 0x2, 0x3)
Set code to 0010, Press Enter
Set code to 0011, Press Enter
Lock Opens (Open = 1)



Lab #3: The Combo Lock          (2)
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READ THE LAB

DO THE PRELAB



Lab #3: The Combo Lock          (3)

• We will provide the framework

• You will build two modules:

– Lab3Lock

• A Moore FSM

– Lab3Counter

• An up-down counter

• Somewhat similar to an accumulator

• Use behavioral Verilog
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Lab #3: The Combo Lock          (4)
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Lab #3: The Combo Lock          (5)

• Use LEDs and Buttons to debug
– Simple

• Hard to mess this up

– Great way to show state

– Low overhead, compared to other tools

• But:
– Can’t see fast events

– Limited number

– No timing information
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FSMs in Verilog

• Next State logic
– “always @ (*) ” 

block with “case”

• Register
– “always @

(posedge Clock)”

• Output logic
– Continuous “assign”
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