
Verilog Synthesis and FSMs

UCB EECS150 Fall 2010

Lab Lecture #3

Agenda

• Logic Synthesis

• Behavioral Verilog HDL

• Blocking vs. Non-Blocking

• Administrative Info

• Lab #3: The Combo Lock

• FSMs in Verilog HDL

2UCB EECS150 Fall 2010, Lab Lecture #3

Logic Synthesis

• Allows designing at a high level

– The tool handles details

• Very good at small-scale optimization

• Synthesis tool is good at small circuits

– Don’t let it design things you can’t

– This is not software

3UCB EECS150 Fall 2010, Lab Lecture #3

Behavioral Verilog (1)

• Specifies what a circuit does

– Not how it is built

• Most common constructs:

– “always @ …”

• always @ *

• always @ (posedge Clock)

– assign Y = …

4UCB EECS150 Fall 2010, Lab Lecture #3

Behavioral Verilog (2)

• always @ *

– Used to describe combinational logic.

– Can cause the nastiest errors

• Make sure no latches are generated

• always @ (posedge Clock)

– Used to infer a register

– Keep these nice and short

• Even an accumulator is too much

5UCB EECS150 Fall 2010, Lab Lecture #3

Wire vs. Reg

• Wire

– Logical connection of circuit elements

– Cannot be assigned in an always block.

• Reg

– NOT a Register

– A variable used in a circuit description.

– Can be assigned in an always block.

6UCB EECS150 Fall 2010, Lab Lecture #3

Blocking vs. Non-Blocking (1)

• Blocking assignment “=”

– Guarantees sequential assignment

– Often costs unwanted hardware

– ONLY use in “always @ *”

• Else simulation and synthesis won’t match

• Non-Blocking “<=”

– All assignments happen simultaneously

– ONLY in “always @ (posedge Clock)”

7UCB EECS150 Fall 2010, Lab Lecture #3

Blocking vs. Non-Blocking (2)

8UCB EECS150 Fall 2010, Lab Lecture #3

always @ (*) begin

b = a;

c = b;

end

always @ (posedge Clock) begin

b <= a;

c <= b;

end

C = B = A

B = Old A
C = Old B

Verilog Fragment Effect

Lab #3: The Combo Lock (1)

9UCB EECS150 Fall 2010, Lab Lecture #3

Lab3

Counter

Rotary

Encoder
Lab3Lock

ButtonParse

ButtonParse

ButtonParse

Reset

A

B

CPU_Reset

Push

C

C
o

m
b

in
a

ti
o

n

S
ta

te
O

p
e

n

Reset_Lock

Enter

Rotary

Encoder

GPIO DIP Switch

LEDs

ResetState

Pushbuttons

U
p

D
o

w
n

• Used to control entry to a locked room
4bit, 2 digit combo (By Default 0x2, 0x3)
Set code to 0010, Press Enter
Set code to 0011, Press Enter
Lock Opens (Open = 1)

Lab #3: The Combo Lock (2)

10UCB EECS150 Fall 2010, Lab Lecture #3

READ THE LAB

DO THE PRELAB

Lab #3: The Combo Lock (3)

• We will provide the framework

• You will build two modules:

– Lab3Lock

• A Moore FSM

– Lab3Counter

• An up-down counter

• Somewhat similar to an accumulator

• Use behavioral Verilog

11UCB EECS150 Fall 2010, Lab Lecture #3

Lab #3: The Combo Lock (4)

12UCB EECS150 Fall 2010, Lab Lecture #3

Locked

Bad 1

Bad 2

OK 1

Open

Combination !=

DIGIT1

Combination ==

DIGIT1

Combination !=

DIGIT2

Combination ==

DIGIT2

Lab #3: The Combo Lock (5)

• Use LEDs and Buttons to debug
– Simple

• Hard to mess this up

– Great way to show state

– Low overhead, compared to other tools

• But:
– Can’t see fast events

– Limited number

– No timing information

13UCB EECS150 Fall 2010, Lab Lecture #3

FSMs in Verilog

• Next State logic
– “always @ (*) ”

block with “case”

• Register
– “always @

(posedge Clock)”

• Output logic
– Continuous “assign”

14UCB EECS150 Fall 2010, Lab Lecture #3

Next

State

Logic

Output

LogicS
ta

te C
u

rr
e

n
t
S

ta
te

F
S

M
 O

u
tp

u
ts

F
S

M
 I
n

p
u

ts

N
e

x
t
S

ta
te

Current State

Acknowledgements & Contributors

Slides developed by Kyle Wecker & John Wawrzynek (2/2010).

This work is based closely on slides by:

Chris Fletcher & Ilia Lebedev (2008-2009)

Greg Gibeling (2003-2005)

This work has been used by the following courses:
– UC Berkeley CS150 (Fall 2010): Components and Design Techniques for Digital Systems

15UCB EECS150 Fall 2010, Lab Lecture #3

