EECS150: Lab 1, FPGA Editor

UC Berkeley College of Engineering
Department of Electrical Engineering and Computer Science

1 Time Table

ASSIGNED | Friday, August 277
DUE Week 3: August 7" — 8" during your assigned lab section

2 Objectives

This lab is meant to expose you to the bare-bones FPGA platform that you will be using for the rest of
the semester. Throughout the semester, you will be introduced to a number of tools that hide the details
of the FPGA you are working with so that you can instead focus on your design. Specifically, you will
learn how to represent circuits as text. A series of tools will then transform your textual circuit into real
hardware on the FPGA. While this approach greatly increases productivity, it is often easy to forget that
you are, in fact, designing components that will be mapped to actual hardware. After working through
this lab, you will take away with you knowledge of the hardware platform that you are using so that you
can make informed design and optimization decisions throughout the rest of the course.

3 Introduction to the CAD Flow

Figure 1 shows the CAD tool flow that you will be using in this lab.

The starting point is the *.ncd' design file. As you will learn in future labs, this file is generated
by the MAP and PAR (place and route) processes that play a part in translating your textual circuit
descriptions down to actual hardware. Don’t worry about MAP/PAR for now; we will be working with
their output (the *.ncd file) and later steps in this lab.

We will now (in Sections 3.1, 3.2 and 3.3) explain each of these CAD steps.

3.1 FPGA Editor

FPGA Editor is a program that allows you to make changes to a circuit that has been mapped to an
actual FPGA. The FPGA, as has been discussed, is a matrix of components and wired interconnects.
FPGA Editor allows you to look at exactly which of these components are currently in use, how they
are being used, and how they have been connected.

FPGA Editor takes a *.ncd formatted file as its input. Specifically, the *.ncd file represents a circuit
that is mapped to a specific FPGAs resources and components. Aside from knowing what this file is
supposed to contain, its details are unimportant. What is important is that FPGA Editor modifies the
x.ncd file based on changes that you decide to make to the circuit. After these changes are made, the
modified *.ncd is used by the BitGen process to manufacturer a *.bit file.

Notice in Figure 1 that the output of MAP/PAR also connects directly to BitGen as opposed to
going through FPGA Editor. This is the typical path that your designs will take this semester: we will

INative circuit description.

Figure 1 FPGA Editor tool flow.

Design On-board

Provided by Staff

MAP/PAR BitGen

010110001 _
| 001001101 -bit
> 000101010
100100101

A 4

iMPACT

.ncd

FPGA Editor

trust the so-called PAR process to do its job better than we can, and not check on its output through
FPGA Editor ourselves.

3.2 BitGen

While the *.ncd is a file that describes a circuit mapped to an FPGA, it isn’t in a format that the FPGA
can understand. The idea behind BitGen is simple: translate the *.ncd into a simpler format that is
supposed to be loaded directly to the FPGA. The result of this process is a *.bit file that corresponds
to the *.ncd

3.3 Program Hardware

Once the =.bit file has been created, the last step in the story is loading the contents of the x.bit file
onto the actual FPGA. This is conceptually a very simple step, however, it requires detailed knowledge
of the programming cable and the FPGA. We will use a specialized tool to program the board for us.

In this class we’ll be using a Xilinx Platform Cable USB II, which is really nothing more than a rather
fancy, expensive wire to connect the program, iMPACT, to the FPGA. iMPACT will then download
the «.bit file into the FPGA, thereby completing the implementation process.

Once this step is complete, our design is running on actual hardware and we can ob-
serve/debug/use it on the XUPv5 boards.

4 PrelLab

Please make sure to complete the prelab before you attend your lab section. This week’s lab will be very
long and frustrating if you do not do the prelab ahead of time.

1. Read the Configurable Logic Blocks section of the Virtex-5 FPGA User Guide.

(a) Pay close attention to the Virtex-5 SLICE (particularly the SLICEL), CLB (Configurable
Logic Blocks), where to find the LUTs within the SLICE, and the FPGA fabric that connects
all of the pieces together.

(b) Answer questions la through le on the back of this lab (the answers are in the
reading!).

2. Read Section 3 above, please make sure you understand it and ask questions ahead of time if
necessary.

3. Get a ¢s150-XX account form from your TA and change your Unix and Windows password to a
new password of your choosing. (This can be done at the beginning of your first lab session.)

(a) You must change your Windows password so that you can login to the lab computers in 125
Cory (which are Windows computers).

(b) You must also change your Unix password for when you are given an SVN? account later in
the semester.

5 Lab Procedure

In this lab, you will use a tool called FPGA Editor to manipulate logic and nets in a simple design.
Throughout the lab, you will verify that your work in FPGA Editor is correct by programming your
FPGA with your design file and seeing it come to life in hardware. For simple verification purposes, all
exercises in this lab will connect DIP switches to LEDs with some logic placed in between the two. For
example, the design file we have provided for you as a starting point implements the logical or of two
DIP switches and shows the result on an LED (as shown in Figure 5.3). In other words, when at least
one of the two DIP Switches is turned to the ‘On’ position, the LED will light up. If neither of the DIP
Switches are ‘on,” the LED will remain off.

5.1 Toolflow: FPGA Editor

Before we start working with FPGA Editor, we will first cover how to move your design from FPGA
Editor to actual hardware. You will be moving your designs through various tools throughout the course
of the lab and you will become intimately familiar with the process throughout the semester.

Now, to get started:

1. Navigate to the CS150 Website and download the Labl.zip file from the Labs page.
2. Unzip the contents of Labl.zip into C:\Users\cs150—xx\Lab1Files®.

e You should have unzipped:

(a) DefaultDesign.ned
DefaultDesign.pcf
AugmentedDesign.ncd

Lightshow.ncd

)
(c)
(d) AugmentedDesign.pcf
)
) Lightshow.pcf

5.2 Introduction to FPGA Editor

Before we can dive into manipulating actual hardware, we must become acquainted with FPGA Editor’s
user interface. To get started, we will first setup an FPGA Editor project.

2If you do not know what version control or SVN is right now, don’t worry. You will be given detailed instructions on
how to set it up and what it is later in the semester.
3For the remainder of the lab, we will assume that all contents of Labl.zip have been unzipped to the same directory.

http://inst.eecs.berkeley.edu/~cs150/Documents/ug190.pdf
http://inst.eecs.berkeley.edu/~cs150/fa10/

5.2.1 Setting up an FPGA Editor Project
1. Double-Click the FPGA Editor icon on the desktop to start FPGA Editor.*

2. When FPGA Editor opens, click Click File — Open.

(a) Under Design or Hard Macro? select Design.
(b) For your Design File, navigate to DefaultDesign.ncd, which you unzipped from Labl.zip.

(¢) If the *.ncd and *.pcf files you unzipped were placed in the same directory, the Physical
Constraints File section should have auto-completed itself for you by the point. If it didn’t
auto-complete, navigate to DefaultDesign.pcf.

(d) Under Edit Mode, select Read Write.
(e) Click Ok at the bottom of the dialog (leave the section on Block RAM data blank).

You now have a ready-to-go project and will be presented with the user interface shown in Figure 2.

Figure 2 A complete FPGA Editor project.

4 Xilinx FPGA Editor - EEC5150_Spring09 LabLncd
File Edit View Tools Window Help

D|s(@|s| ¢ B8] Els|m=| | k2] | - |~ 53l =olz)z] A [mm @[m /\
et
B Arayl (@[] | R SIEE |5
[&N Components JEECAY
Name Fiter | _suorouie |
clear |
F deloy
Name Site Type ":‘:e
T | GPio_compL 15 108 2
2 |Grio_cowL |Gz 08 2 itz
3| GPio_COMPL| 22 08 2 o)
4| GPIO_COMPL|L14 108 2 o]
5 |GPio_cowpL ki 08 2 yelow v | it
5 |Grio_pri |uzs []
7 AL ol ZAVAY T aYa fib
e 1T TA'CEEAY v_b}
) GPIO_LED[1] [L21 108 TR
10__[Gpio_LEDp [120 108 2 \\m“:“;;all‘
T |GPo_LEDRI [L15 108 2
2 |GPio_LEDi4] |L16 08 2 \NEET
8 |GPIO_LEDE] 122 08 2 sk
14| Grio_LEDs) | K2t 108 2
5| GPo_LEDR [K16 108 2
6 |N2d SLICE_XGY10 | SLICEL 3 [ton b ar

% Worldl | E=8 e =)

open design C:\Users\Christopher Fletcher\Desktop~FPGAEditor l1ab’\FPGAEditor Input\EECSL50_Spring03_Labl.ncd C:\Users\Christopher Fletcher\Desktop\FPGAEditor 1ab“FPGAEditor Input“EECS150_Spring09_Labl.pef

_TOP_KLS05" is an NCD, ve 3.2, device xchvlxliDt. package ££113
Building chip graphics
Loading speed info

Reading C:\Users\Christopher Fletcher\Desktsp\FPGAEditor lab\FEGAEitor Input)EECS150 Spring03_Labj nod
n RE Device from file 'Gvlwll0t nt
3

Loading device for applicatio: nph' in envirom S
" FPGA_T(

—

For Help, press FL xcSvbA10t-11f1136Read Write

5.2.2 Navigating an FPGA Editor Project

The main project view shown in Figure 2 presents several windows that you will use throughout the lab.
The Array Window shows you a schematic of the FPGA you are working with. It will highlight different
Components of the FPGA, that are currently in use, as well as Nets or Wires®, depending on which
view mode you are currently using. The List Window allows you to find and sort components and nets
by their names. The World Window shows you a mini-map of the entire FPGA and indicates, with a
boxed outline, what region is currently being shown in the Array Window. The Console Output (at

4If FPGA Editor is not on your desktop, you can navigate to it through Start — Programs — Xilinx ISE Design
Suite 10.1 — Accessories — FPGA Editor.

5FPGA Editor makes a distinction between what is known as a net and what you are probably more familiar with: a
wire. A net is an abstract connection between different components, usually shown as a straight line from component to
component. In truth, connections between components in an FPGA are seldom straight lines, as the FPGA is a matrix of
interconnects. Thus, the physical connection between two components in your design is called a wire. After two items in
your design are routed, wires are derived from nets.

the bottom of the view) shows error messages and other indicators that you may find useful throughout
the design process. The Buttonbar (to the far right of the screen) features a flurry of useful buttons
that we will use throughout the lab. The Toolbar (at the top of the view) features several worthwhile
buttons and is shown in Figure 3.

Most of the buttons on the toolbar are self-explanatory. You should be aware of two in particular:

1. The Zoom Selection button will automatically zoom you to whichever net/component you have
selected in the List Window. This is very useful as finding components in the Array Window
is very difficult due to the FPGA’s complexity.

2. The Apply button (to the far right of the toolbar) must be pressed/enabled.

Figure 3 The main FPGA Editor toolbar.

Zoom selection Apply

(F11) l

Ble | n®@me| L] - [—[HF 2al4 =olEx]alwE ojm]E

) Visibility modifiers
Zoom in/out y

5.3 The Default Design

Now that you are familiar with the main FPGA Editor view, we can take a look at the default design
that came with DefaultDesign.ncd. This design is very simple. As mentioned in Section 5, the default
design implements the abstract circuit shown in Figure 4. On the FPGA board, GPIO_LED]...] stands
for General Purpose Input/Output LED. The ... indicates that there are a vector of LEDs to
choose from (8 on the XUPV5). Likewise, GPIO_DIP]...] stands for the general purpose DIP Switches
found on in the bottom right corner of the board. Since there are 8 DIP Switches on the DIP Switch
panel in the bottom right, this is also a vector whose indices range from 0-7. Thus, the default circuit
performs the or of the bottom two DIP Switches and shows the result on the LED indexed by 0.

Figure 4 The “Default Design” circuit.

Ve N\

{ \

|
GPIO_DIP[0] | | GPIO_LEDI0]

)) " — »
GPIO_DIP[1] | :

| /

\ -

o

We will now explore this circuit down to the LUT that implements the or of the two DIP Switches.

1. In the List Window, locate the component that is of type SLICEL and write down its Site on
the check-off sheet for this lab (Question 2a).

2. Left-Click on the SLICEL component and press F11 to zoom to its physical location on the
FPGA.

3. Left-Click the SLICEL in the Array Window that appears when you press F11.

4. Left-Click the editblock button on the Buttonbar at the far right of the screen.

You should now see a window (shown in Figure 5) showing the internals of the SLICEL you selected.
Before continuing, make sure that the window background is black. A black background
indicates that you can write/modify the SLICEL. If the background is gray, refer to Section 5.2 to set
the Edit Mode to Read Write. If the Edit Mode is set correctly, make sure the Begin Editing
button in the SLICEL window toolbar (shown in Figure 5) is pressed.

Figure 5 A Virtex-5 SLICEL.

S Blockl - Edit Site SLICE_XY100 with Comp N_2_i [=llE =S

On the left-side of the SLICEL, you will see the four 6LUTs that come with the SLICE. Each of these
LUTs has two outputs. Our default design only uses one output from one of the LUTs. Find the name
of the LUT output port (not the output port from the SLICE) that corresponds to this output line and
fill in its name on the check-off sheet for this lab (Question 2b).

Right now, we have fairly decent visibility of our design. We know exactly which SLICE implements
our simple design on the FPGA. We also know which LUT in the SLICE is doing all of the work. Let’s
dig deeper and verify that the logic function implemented by the LUT is exactly what we expect (namely
an or).

1. In Figure 5, find the Attributes button on the SLICE toolbar and press it.

2. Scroll down in the rows of attributes until you see the line that clearly implements our circuit (it
should look like two symbols (the two inputs) and some operator between them).

3. Write down the contents of the row on the check-off sheet for this lab (Question 2c).

You now have complete visibility of your design. You have found, down to the LUT function generator
itself, how our simple circuit is implemented on the FPGA. We will now employ the BitGen and
iMPACT tools to see this circuit come alive in hardware.

5.4 Toolflow: BitGen and iMPACT

In order to push our design to hardware, we must run BitGen to create a *.bit file and then run
iMPACT to program the FPGA with the *.bit file.

5.4.1 BitGen

1. Close the SLICE window that you were looking at in Section 5.3.
2. In the main FPGA Editor view, click Tools — Probes.

(a) In the Probes dialog box, look to the right and click on the Bitgen... button.
(b) In the Run Bitgen dialog box, click Ok.

If the process was a success, the console output window at the bottom of the screen should show
Creating bit map... for a while and then read Done.

5.4.2 iMPACT
To open iMPACT through FPGA Editor:

1. In the main FPGA Editor view, click Tools — Probes.

(a) In the Probes dialog box, look to the right and click on the Download button.
e The iMPACT UI shown in Figure 6 should now be open.

(b) Make sure that the Platform Cable USB II is connected to the JTag port on the XUPV5
board and that the XUPV5 board is on.

e The little light on the Platform Cable USB II will turn green when the cable detects
that it is connected to a powered Xilinx chip.

e The power switch for the XUPV5 board is in the upper right of the board.
(¢) In the iMPACT UI, click Initialize Chains.
(d) When prompted to Assign New Configuration File, click Bypass four (4) times.

e Of the 5 chips in the main iMPACT window, you want to Bypass until the right-most
chip is colored green.

(e) When the right-most chip is green, select DefaultDesign.bit in the Assign New Configura-
tion File dialog and click Open.

(f) When the Device Programming Properties dialog opens, click Ok.
(g) Right-Click on the right-most chip and press Program.
(h) Again, when the Device Programming Properties dialog opens, click Ok.

After several seconds a blue banner reading Program Succeeded should appear. This means that
your board has been programmed successfully!

Now that your board has been programmed, we will verify that the default design does what it should
do.

1. In the bottom-right of the XUPV35, locate the GPIO DIP SW bank of switches and flip the switches
labeled ‘17 or ‘2.

2. Verify that an LED lights up when one or both of these switches are turned to the ‘ON’ position.

3. Be prepared to point to which LED lit up to your TA for check-off (Question 2d).

Figure 6 The iMPACT user interface.

15 iIMPACT - [Boundary Scan]

% File Edit View Operstions Options Output Debug Window Help
—~

PEspax(@xixo: &2 Zo|wW

4

Right click device to select operations
[§ 8 Boundary Scan = °F

B SlaveSerial

‘53 Direct SPI Corfiguration
[=] SystemACE
" [E]PROM File Fommatter

Initialize Chain

Xc5vbel10t
eecs150_spring...

Modes

Awailable Operations are:

m @ Boundary Scan

Driver wversion: src=1029, dest=1029.

Cable PID = 0008.

Max current requested during enumeration is 74 mA.
Type = 0x0004.

Cable Type = 3, Revision = 0.

Setting cable speed to 6 MHz.

Cable connection established.

Firmware version = 1302.

File version of C:/Xilinx/10.1/I5SE/data/xusb xlp.hex = 1302.
Firmware hex file wverszion = 1302.

Type = 0x0004.

ESN option: 000011732C1F01.

PLD file version = 0012h.

PLD version = 0012h.

PROGRESS_END - End Operation.
Elapsed time = 2 sec.

4

Output Emor | Waming

Driver windrvré6.sys version = 8.1.1.0. WinDriver v8.11 Jungo (c) 1997 - 2006 Build Date:

Cct 16 2006 X86 32bit S5YS 12:35:07, versi

m

Configuration | Platform Cable USB | 6 MHz | usb-hs

Figure 7 The new logic function featuring a 3"¢ DIP switch.

GPIO_DIP[2]
GPIO_DIP[1]
GPIO_DIP[0]
/

GPIO_LEDI0]

[N DR 4 I ——

14

5.5 Augmenting the Design

Now that we know how to look at the bare-bones of our design, we are going to make some modifications
to show off the power of the LUT. Specifically, we are going to add a DIP Switch to our design, connect
it to the LUT that was computing or in Section 5.3, and make the logic function implemented by the
LUT a bit more interesting. We would like to change the logic function to that shown in Figure 7

Take a moment to appreciate the power of this modification. It takes no more LUTSs to implement
the relatively complex function shown in Figure 7 as it does to implement the simple or gate shown
in Figure 4. This is because LUTs are function generators that can accommodate any function
representable with the number of input ports they support. Furthermore, how a LUT is used doesn’t
change the delay through it. Know that the LUTs in the Virtex-5 parts you are using are
6LUTs

Now we will make the changes to our design to accommodate the new requirements.

1. Open FPGA Editor using AugmentedDesign.ncd as your design file.

e If you need help opening FPGA Editor, refer to Section 5.2.

e AugmentedDesign.ncd should look identical to DefaultDesign.ned at first glance. The only
difference is that we have setup the I/O parameters for the third DIP switch for you, a process
that requires knowing several hard-to-explain settings.

2. In the List Window, find the component whose type is a SLICEL (this SLICE will be implement-
ing the same or function that it was originally).

3. Click on the SLICEL component and use Zoom Selection (F11) to zoom to the SLICE in the
Array Window.

So far, what we have done is familiar from Section 5.3. Before opening the SLICE, however, we are
going to attach the third DIP Switch to the SLICE.

Figure 8 The input and output ports of the SLICEL.

Output (referred to as a ‘triangle’ or
‘component pin’ in the lab) from the
LUT we are using

Inputs to the LUT we are using

66LUTSs have 6 inputs. This convention holds for other LUTs such as the 4LUT (4 inputs) or 5LUT (5 inputs).

Shown in Figure 8 are the nets connected to the SLICEL and the input/output pins’ for the SLICEL.
Circled are 6 of the triangles/pins pointing towards the right. These are the 6 inputs to the 6LUT we
are using. Two of the 6 have light-blue lines extending into them. These are the nets that connect, on
the other end, to GPIO_DIP[0] and GPIO_DIP[1].® This is expected: this SLICE implements the or of
these two DIP Switches.

We are now going to attach the third DIP Switch to the LUT in this slice.

1. At the top of the List Window, select Unrouted Nets from the drop-down box.
2. Verify that the only item left in the List Window is one called GPIO_DIP ¢[2].
3. Click on one of the unused triangles amongst the 6 that are circled in Figure 8.

(a) Make sure to only select the triangle and not the line itself.

e You can check yourself because if the triangle is selected, it alone will turn red. If the line
is selected, on the other hand, the line will turn red.

(b) Make sure that the triangle you selected is a component pin and not just a site pin.

e You can check this in the Console Output (see Figure 2) section of the FPGA Editor
view. If the triangle you selected is only a site pin, the message you will see when
you select the triangle will look something like site .pin = SLICE_X17Y100.CXX (this is
NOT a triangle that will work). If the triangle is a component pin, the message will look
more like site .pin = SLICE_X17Y100.CXX, comp.pin = N_XX_i.CXX. Notice that the
message is longer and contains the text comp.pin. If, in the next steps, you get the
error message “WARNING:FPGAEditor:783 - There is no comp pin to add
to a net.” your triangle is not a component pin and will not work.

4. While the triangle is still selected, hold down the Ctrl key and click the unrouted net labeled
GPIO_DIP ¢[2] in the List Window.

5. With both the triangle and the unrouted net selected, click the route button on the Buttonbar
(shown in Figure 2) at the far right of the screen.

6. Verify that you see a console output message that reads:
ERROR:FPGAEditor:361 — Nothing found to route. Ironically, this means that everything is ok.

7. Click on the autoroute button, also found on the button bar.

At this point, you should see the port you selected connected with a light-blue line, just like the other
two that were there originally. Now that we have connected the third DIP Switch to the SLICE, its time
to change the logic within the LUT that implements the logic.

1. Follow the instructions given in Section 5.3 to get to the screen where you can modify the At-
tributes for a specific LUT.

2. On the attributes line for the LUT that implements or, make the changes necessary so that the
LUT implements the logic described in Figure 7.

e When making logic changes, you may use the following symbols:
(a) and: *
(b) or: +
()
(d)

not:
xor: @

7Specifically, the pins on a component such as the SLICEL are known as component pins or casually referred to as
“triangles.”

8 Above the two used inputs, you will also see a solitary output (denoted by a triangle pointing in the opposite direction
as the inputs, extended by a light blue line). This output is tied to GPIO_LEDI[0] and finishes the connection from the
DIP switches to the SLICEL to the LED bank. This net is already connected for you - don’t modify it.

10

e When changing the logic within the LUT, pay close attention to which of the LUTSs input
ports (A6, A5, ...) correspond to which DIP Switches.

e Do not modify the Config line in the Attributes window. When you Apply your changes
(see below), the Config line will automatically update itself to reflect your changes.

3. When you are finished modifying the LUT logic, click the Apply button followed by the Save
and Close button in the LUT view (see Figure 5).

When you finish making your changes, its time to move our new design to hardware and verify that
it worked.

1. Follow the instructions in Section 5.4 that describe how to run BitGen and iMPACT.
2. Verify that your design works in hardware by manipulating the three DIP Switches.

3. Show your working design to your TA for check-off (Question 3a). Since there is one more
section in this lab that requires you to demo a design in hardware to your TA, save
your x*.bit file from this section someplace safe for the time being.

After you have successfully re-programmed your FPGA board and have verified your augmented
circuit, take a moment to think about some optimizations that you can make to future designs based
on what you now know about FPGA Architecture. Specifically, consider the 6LUT. We have added a
relatively significant amount of logic to our simple or gate yet used no additional logic resources in the
FPGA. This is because the 6LUT is indifferent to the complexity of your logic functions, but limits us
to using its 6 inputs. We get to create logic functions that use 1 to 6 inputs with the same amount of
FPGA resources regardless of whether we use 1 or 6 (or somewhere in-between) inputs.

On the flip side, as our logic functions require more than 6 inputs, we must employ more than
one 6LUT. From the PreLab, we learned how to implement 7 and 8 input functions in a single SLICEL.
Specifically, if we have a 7 input function, we must use two 6LUTs (takes up % of the LUTs in a SLICEL).
If we have an 8 input function, we must use four 6LUTs (takes up all of the LUTs in a SLICEL). Given
that our designs in this lab have only used i of the LUTs in a SLICEL, the resources we use, when
upping the number of inputs to our logic functions, increase substantially. Take this to heart in your
future designs. In general, optimize your work based on general good digital design principles and the
platform you are targeting (in this case the Virtex-5 LX110T FPGA).

5.6 LED Lightshow

Now that you know how to modify the logic function in a LUT and how to manipulate nets, its time for
the grand finale, called the Lightshow. The lightshow (whose circuit is shown in Figure 9 is a simple
circuit that lights up multiple LEDs in sequence, effectively creating a lightshow. The catch is that this
circuit only functions properly when an Enable signal is high. Your task in this section is to fix the
Enable signal, program the board with the fixed circuit and demo the lightshow to your TA.

To begin, open a new instance of FPGA Editor with the lightshow design:

1. Open FPGA Editor using Lightshow.ncd as your design file.

e If you need help opening FPGA Editor, refer to Section 5.2.

If you zoom into the Array Window once the design is loaded, and play with the toolbar visibility
modifiers (see Figure 3), you will see that this circuit is far more complex than anything you have seen
before. Although Figure 9 abstracts the complexity of the circuit behind a block, the circuit itself looks
like anything but a block. Like any other circuit instantiated on an FPGA, the lightshow is composed
of numerous interconnects between CLBs and the SLICEs contained within them.

As mentioned above, your task is only to implement the Enable signal logic. The rest of the lightshow
(the portion in the box labelled “Lightshow” in Figure 9) has already been completed for you. The
trick is that we have to figure out exactly where the Enable signal is generated so that we can make it
perform the function that we want it to.

11

Fortunately for us, FPGA Editor is kind enough to reserve a sensible name for the nets and com-
ponents that we are interested in. If you look through the List Window (when All Components is
selected in the drop down), you will find a SLICEL called “Enable.” This is the SLICE that generates
the Enable signal from Figure 9.

If you take a closer look at the SLICE called Enable, you will notice that its B output port is
connected to the Enable signal. Right now, this output is only driven by 2 DIP switches (specifically, it
is connected to by nets called GPIO_DIP net[0] and GPIO_DIP_net[1] which themselves connect to the
I/0O pads for the DIP switches). Your task is to connect the rest of the DIP switches up to the
Enable output such that your Enable signal is driven by the same logic as what is shown
in Figure 9.

Figure 9 The lightshow circuit.

GPIO_DIP[0]
GPIO_DIP[1] . GPIO_LED

Lightshow L) -)
GPIO_DIP[2] J 4 4
GPIO_DIP[3] 8
GPIO_DIP[4]
GPIO_DIP[5] , GPIO_COMPLED

1§

GPIO_DIP[6] 4 4 v
GPIO_DIP[7] 5

In order to match the specifications in Figure 9, your solution must implement an 8 input and gate.
To make this section more interesting, you are required to do this in two ways - with:

1. Two 6LUTSs. This method will use one or two SLICELs.

2. Four 6LUTs. This method must use one SLICEL.

Before you begin, please see Section 5.6.1, below. Once you have implemented the Enable
logic shown in Figure 9, you will once again push your solution to hardware for verification. Step-by-step:

1. Follow the instructions in Section 5.4 that describe how to run BitGen and iMPACT.

2. Verify that your design works in hardware by manipulating all 8 DIP Switches.

3. Show one version of your working design to your TA for check-off (Question 4a).

4. Show FPGA Editor screenshots, of each implementation’, to your TA. (Following Questions 4b-4c).

5. Answer thought question 4d.

5.6.1 Lightshow Hints

The lightshow circuit is very complex compared to what you have seen before. Don’t try to understand
or follow everything that is going on. Instead, focus your attention to the SLICEL named Enable and
to the unrouted nets GPIO_DIP _net[2] ... GPIO_DIP _net[7].

One thing to keep in mind as you are trying to perform the following more complex tasks with FPGA
Editor is that the tools are not perfect. If you find yourself spending excessive amounts of time trying
to do simple tasks, please make sure you have closely read each of the following hints. If you still find
that you are experiencing difficultly, ask the staff for help.

90pen the SLICE window and take a screenshot of the SLICE(s) that you modified. Be prepared to explain what you
did.

12

1. Think about how you are going to implement the 2x and 4x 6LUTSs versions of the Enable
function. Don’t start until you have a proposed solution.

2. Consider implementing the 2x 6LUT version first. Experience tells us that students have a simpler
time with this implementation.

3. GPIO_DIP_ net[0] and GPIO_DIP_ net[1] have already been connected for you, but the others are
unrouted. To route them properly, follow the instructions in Section 5.5.

4. At some point, you may want to Add a Net. This is useful for connecting arbitrary components
together. To add a net:

(a) Hold down the Ctrl key and click each of the triangles/component pins that you want to
connect together.

(b) Click Add on the button bar as seen in Figure 2.

(c) Give your net a name'” of your choosing, and click Ok.

If you want to connect two components that are so far away you can’t Ctrl + click both of them
on the same screen:

(a) Click one of the triangles (corresponding to one end of the net) and click Add.

(b) Find the other triangle in your design (using F11 or another means of jumping around the
FPGA fabric).

(¢) Ctrl + click the unrouted net which you added in the first step and the triangle that you
just jumped to.

(d) Click route in the button bar from Figure 2.

(e) Click autoroute to finish routing.
5. If you connect a new LUT: you must make sure that its output is properly driven.

(a) In Figure 5, locate the Output Enable button for the LUT that is being used (it should
appear as a triangle pointing to the right).

(b) Click the corresponding Output Enable triangle for your LUT so that the line connecting
your LUT’s output to the SLICE’s output port is light blue (such as in Figure 5).

6. Make sure the nets that you connect to different SLICEs have corresponding logic in the LUT
that they connect to. For example, if your 6LUT uses the input A6, you must connect the pin
that corresponds to that input to some net. If there is a mismatch between your nets and the
logic within your SLICE, you will see errors such as Dangling pins or Partially routed design.
These errors will prevent BitGen from running properly.

7. Should you use the SLICE’s internal multiplexing ({F7A, F7B, F8} MUX), it is important to realize
that you cannot successfully autoroute nets connected to the selectors for the internal MUXs (AX,
BX, CX) if you have already connected inputs to the LUTs. You will need to first disconnect
the inputs to the LUTs if you wish to route connections to the internal multiplexors.

8. When attempting to delete an element, it is important to distinguish between wires and nodes.
Generally speaking, selecting a wire that is part of a net is equivalent to selecting the net. Therefore,
selecting a wire and pressing Del will have the effect of deleting the net. When trying to remove
one node from the net, you will instead want to select that individual node (triangle) and press
Del. If you are still experiencing trouble, try first unrouting the net from which you wish to remove
nodes.

9. If you are having trouble determining how to use the internal MUXs, try playing around with the
various triangles inside a SLICE while in Block View.

10When naming your nets, make sure to not include spaces. Spaces in net names will cause unpredictable errors in FPGA
Editor.

13

10. Save often! This, of course, goes for all your work in this class, but even more so for this lab. The
undo features of FPGA Editor leave a lot to be desired. You may very well be unable to undo your
last command or you may find the program crashing rather frequently. Be patient, save often.

=—> Watch the console output at the bottom of the screen constantly. If you did
something wrong, the console is the only mechanism that is going to send out an alert.<—=

14

6 Lab 1 Checkoff

ASSIGNED | Friday, August 27"¢
DUE Week 3: August 7" — 8" during your assigned lab section

Man Hours Spent Total Points TA’s Initial Date Time

/100 / /
Name SID Section

1o PreLab oo o (25%)
(a) How many SLICEs are in a single CLB (Configurable Logic Block)? -
(b) How many inputs do each of the LUTs on a Virtex-5 LX110T FPGA have? -
(¢) How many of these LUTs does the LX110T have? -

)

(d) How can you implement a logic function of 7 and 8 inputs in a single SLICEL?

(e) What is the difference between a SLICEL and a SLICEM?

2. Default DesiGIot o (25%)
) SLICE Site # that is used to implement Orcoiiiiiiiiiainne....

b)
()
(d) Show (or point to) the LED for your TA i, -

LUT output port name that is used to implement or

(a
(
LUT attributes used to implement or i

3. Augmented Design ...ttt o (25%)

(a) Show your working design, on hardware, to your TAt

4. LIgIEShOW .ottt o (25%)
(a) Show your working design, in hardware, to your TA it
(b) Show the 2x 6LUT screenshot to your TA.o, .
(¢) Show the 4x 6LUT screenshot to your TA. it -
(d) The 4x 6LUT implementation requires more LUTs than the 2x 6LUT implementation. Why

would you ever choose it over the 2x 6LUT implementation?

15

Rev. | Name Date Description
E Austin Doupnik | 8/27/2010 | Moved lab to Fall 2010. Removed old command line informa-
& Mike Eastham tion
D Chris Fletcher 1/20/2010 | Moved lab to Spring 2010. Added 2x implementation require-
ments for the “Lightshow” circuit. Added clarification when
launching iMPACT.
C Kyle Wecker 8/29/2009 | Expansion of hint section & Minor terminology updates
& Chris Fletcher
B Chen Sun 1/22/2009 | Fixed typos
& Chris Fletcher
A Chris Fletcher & | 1/2/2009 | Wrote new lab

John Wawrzynek

16

http://cwfletcher.net/
http://cwfletcher.net/
http://cwfletcher.net/
http://cwfletcher.net/
http://www.cs.berkeley.edu/~johnw/

	Time Table
	Objectives
	Introduction to the CAD Flow
	FPGA Editor
	BitGen
	Program Hardware

	PreLab
	Lab Procedure
	Toolflow: FPGA Editor
	Introduction to FPGA Editor
	Setting up an FPGA Editor Project
	Navigating an FPGA Editor Project

	The Default Design
	Toolflow: BitGen and iMPACT
	BitGen
	iMPACT

	Augmenting the Design
	LED Lightshow
	Lightshow Hints

	Lab 1 Checkoff

