3.15)

- (a) Is not a synchronous sequential circuit because there is no register.
- (b) Is not a synchronous sequential circuit because there is a combinational loop.
- (c) Is a synchronous sequential circuit because the feedback loop is on the other side of a register.
- (d) Is also a synchronous sequential circuit because the feedback loop is on the other side of the register.

3.19)

This FSM has two inputs A and B, and an output Q. Q_n is high when A_{n-2} is high and B_{n-1} is high, otherwise it is zero.

CS		NS		А		В		0			
SO		SO		0		Χ		0			
S0		S1		1		Χ		0			
S1		S0		Χ		0		0			
S1		S2		Χ		1		0			
S2		S0		Χ		Χ		1			

3.25)

3.26) (a)

(b) Mealey

(C)

CS		NS		A		В	1	Z
s0		 S1		1		0		0
S0		S1	Ì	1		1		1
S0		S2		0		Х		0
S1	Ι	S2	1	0	1	0	1	0

```
      S1 | S2 | 0 | 1 | 1

      S1 | S1 | 1 | 0 | 1

      S1 | S1 | 1 | 1 | 1

      S2 | S2 | 0 | 0 | 0

      S2 | S2 | 0 | 1 | 0

      S2 | S1 | 1 | 0 | 0

      S2 | S1 | 1 | 1 | 1
```


3.28)

CS | NS | X | Q

```
00 | 10 | 0 | 0
00 | 11 | 1 | 0
01 | 10 | X | 1
10 | 00 | 0 | 1
10 | 01 | 1 | 1
```


3.30)

- (b) 1 / 2 GHz = 500 psTolerable skew = 500 ps - 430 ps = 70 ps
- (c) The path through the bottom XOR gate is the

one we need to worry about. Since the contamination delay of the XOR gate is 55ps and the clock-to-Q minimum delay of the flip flop is 50ps. Therefore clock skew of up to 55ps + 50ps - 20ps = 85ps is tolerable.

(d) Here circuit is a balanced tree. It has a period of 70ps + 2 * 100ps + 60ps = 330ps, a frequency of 3.03GHz. As for hold time violations, this new circuit adds an XOR in the shortest path, therefor the maximum tolerable skew is now, 55ps + 2 * 50ps - 20ps = 135ps.

3.31)

OperatingFrequency = 1 / 110ps = 9.09GHz

- (b) ClockPeriod = 1 / (8GHz) = 125ps
 TolerableSkew = 125ps 110ps = 15ps
- (c) Since the contamination delay of the Adder from Cin to either output is 15ps and the hold time is 10ps, there is tolerable skew of 5ps.

3.32)

Interview Question 3.2

