Homework 4
Fall 2010
CS150
3.15)
(a) Is not a synchronous sequential circuit because there is no register.
(b) Is not a synchronous sequential circuit because there is a combinational loop.
(c) Is a synchronous sequential circuit because the feedback loop is on the other side of a register.
(d) Is also a synchronous sequential circuit because the feedback loop is on the other side of the register.
3.19)

This FSM has two inputs A and B, and an output Q. Q_n is high when $A_{-}\{n-2\}$ is high and $B_{_}\{n-1\}$ is high, otherwise it is zero.
CS | NS | A | B | O

$3.24)$
3.25)

3.26)
(a)

(b) Mealey
(c)

```
        CS | NS | A | B | Z
```

 S0 | S1 | 1 | 0 | 0
 S0 | S1 | 1 | 1 | 1
 S0 | S2 | 0 | X | 0
 S1 | S2 | 0 | 0 | 0
 | S1 | S2 | 0 | | 1 | \| | 1 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| S1 | S1 | 1 | - | 0 | | 1 |
| S1 | S1 | 1 | 1 | 1 | \| | 1 |
| S2 | S2 | 0 | - | 0 | \| | 0 |
| S2 | S2 | 0 | 1 | 1 | 1 | 0 |
| S2 | S1 | 1 | | 0 | \| | 0 |
| S2 | S1 | 1 | \| | 1 | \| | |

3.28)

CS | NS | X | Q

00	\mid	10	\mid	0	\mid	0
00	\mid	11	\mid	1	\mid	0
01	\mid	10	X	1		
10	\mid	00	0	1		
10	\mid	01	\mid	1	1	
11	\mid	10	X	1		

3.30)
(a) ClockPeriod = clock-to-Q_max +3 * xor_delay + setup

$$
\begin{aligned}
& =70 \mathrm{ps}+3 * 100 \mathrm{ps}+60 \mathrm{ps} \\
& =430 \mathrm{ps}
\end{aligned}
$$

OperatingFrequency $=1 / 430 \mathrm{ps}$

```
    =2.33GHz
```

(b) $1 / 2 \mathrm{GHz}=500 \mathrm{ps}$

Tolerable skew $=500 \mathrm{ps}-430 \mathrm{ps}=70 \mathrm{ps}$
(c) The path through the bottom XOR gate is the
one we need to worry about. Since the contamination delay of the XOR gate is 55ps and the clock-to-Q minimum delay of the flip flop is 50ps. Therefore clock skew of up to 55ps $+50 \mathrm{ps}-20 \mathrm{ps}=85 \mathrm{ps}$ is tolerable.
(d) Here circuit is a balanced tree. It has a period of $70 \mathrm{ps}+2 * 100 \mathrm{ps}+60 \mathrm{ps}=330 \mathrm{ps}$, a frequency of 3.03 GHz . As for hold time violations, this new circuit adds an XOR in the shortest path, therefor the maximum tolerable skew is now, $55 \mathrm{ps}+2 * 50 \mathrm{ps}-20 \mathrm{ps}=135 \mathrm{ps}$.
3.31)
(a) ClockPeriod = clock-to-Q prop + AB2Co + Ci2S + setup
$=35 \mathrm{ps}+25 \mathrm{ps}+3 \mathrm{ps}+30 \mathrm{ps}$

$$
=110 \mathrm{ps}
$$

OperatingFrequency $=1 / 110 \mathrm{ps}=9.09 \mathrm{GHz}$
(b) ClockPeriod $=1 /(8 \mathrm{GHz})=125 \mathrm{ps}$ TolerableSkew $=125 \mathrm{ps}-110 \mathrm{ps}=15 \mathrm{ps}$
(c) Since the contamination delay of the Adder from Cin to either output is 15 ps and the hold time is 10 ps , there is tolerable skew of 5ps.
3.32)
(a) ClockPeriod $>=$ clock2Q $+N$ * CLB prop + setup $1 / 40 \mathrm{MHz}>=.72 \mathrm{~ns}+\mathrm{N} * .61 \mathrm{~ns}+.53 \mathrm{~ns}$ 25ns $>=1.25 \mathrm{~ns}+\mathrm{N} * .61 \mathrm{~ns}$ $\mathrm{N}<=38$
(b) TolerableSkew $=$ clock2Q cont + CLB cont

$$
=.50 \mathrm{~ns}+.30 \mathrm{~ns}
$$

$=.80 \mathrm{~ns}$
Interview Question 3.2

