I50phone Concept

• **i50choose**
 - Define and present local configuration
 - Name, addr
 - channel, ...
 - Announce to chosen group

• **i50talk**
 - Collective and individual info about current group
 - Constructed from announcements
 - Select 2-way sessions

• **Notifications and status**
 - Useful information about what is going on

• **Extensions & Options**

i50choose

- **Configure and display various aspects of your local device**
- **Wireless channel**
 - Determines set of potential participants
i50 announcements

- Periodically, each device announces itself on its selected channel.
- Wireless network is used for control
 - Like call setup, login, join
- And for audio communication
- And potentially for other things

=> wireless protocol with extensible packet format

i50talk Registry

- Announcements received from other devices on the channel.
- Add entry to registry on arrival.
- Display current registry
- Allow user selection among entries
 - Open a audio session
- Age and delete entries
- Choose new channel => repopulate registry

Who Talks to Whom?

- Select i50talk member to make a call
- Accept call
- 2-way conversation over digital wireless
 - Audio signal?
 - Audio compression?
- Party line?

Audio Capture and Transmission

- Capture: convert the analog signal from the microphone into a series of digital values
 - 4 kHz sampling
 - 16-bit samples (maybe 12)
- Package a chunk of samples into an audio message.
- Transmit the chunk onto the wireless channel.
 - Specific destination address
 - Broadcast
- 40 B @ 4 kHz => 5 ms voice
- 40 B + 16 B preamble and header @ 250 kbps => 1.8 ms "channel time" to xmit
 - 38% of the channel for 1 way
- Congestion => delay
 - Some jitter tolerable
 - Drop if gets too old
Audio Reception and Presentation

- Receive a chunk of audio samples in an audio message.
- Drive the speaker at a constant rate
 - 4 kHz
 - DAC – digital to analog
- Buffer enough incoming audio data that can maintain smooth playback

Extensions

- Session record and playback
- Teleconferencing
- Ring tones
- Audio effects
- Background
- Multisource mixing
- Registry images
- Video effects
- Game elements
- Text exchange

Functional Elements

- Construct Local Configuration
- Render display elements
- Announce Self to Group as Configured
- Maintain Registry of announcements
- Capture, packetize, transmit RT Audio
- Receive and Play RT Audio packets
- Play digital audio files
- Capture button & Cursor actions
- Receive / Transmit digital audio files (???)
- Transmit and Receive button & cursor actions (?)

CaLinx2 – Your EECS150 …

Focus so far has been on constructing the combinational logic, storage elements, and interconnect to form useful synchronous systems.
Extending digital design

Over Wireless network

- IEEE 802.15.4 Personal Area Network
- ADC channels
- Simple display
- Serial interface

Getting from here to there

- Week 6 – Lab 5: Network Digital Audio
 - Spool winamp stream from ethernet to audio codec
 - Tools: Chipscope.
- Week 7 – CP 1: RT audio record and replay
 - Audio capture on button press from Mic to RAM.
 - Light LED when speaking is active
 - Audio play on button press from RAM to speaker
- Week 8 – CP 2: Display
 - Render canned source to video using Block SRAM
 - Build basic display capability
- Week 9-10 CP 3: Wireless
 - Stream RT audio to and from 15.4 radio
- Week 11 CP4: Basic i50phone
 - Wireless audio 2-way line with GUI
- Week 12-13: i50phone+
 - Select option that you will implement
- Week 14: Final i50phone+ Project Checkoff
- Week 15: Writeup the Report

Announcements

- Reading for Today: K&B 10.4.1-3
- Mid Terms
 - Mean: 70, Median: 71, Mode: 80, Max: 97
 - Regrade policy: submit written request for grading correction by Friday 2pm. We will review and make final decision.
 - Special offer: Reclaim 20% of points lost by correcting your mid term and turning it in F@2pm.

- HWs will provide include review material
- Discuss scheduling of Mid III
- No discussion sections this week
- Friday 9am will no longer be held
Underneath the Project

Local Configuration

- Form: logical registers
- Implementation: FPGA
- Entry
 - Hardcoded (bit file)
 - User entry (very limited)
 - User selection
 - Network provided
 » Ethernet or Wireless

Registry

- Form
 - Array of Registers (RAM) - table
- Announcement
 - Packetize Configuration Registers
 - Packet format specification
 - Transmit according to current channel config
- Current Membership
 - Array of entries, timestamped
 - Entry insertion / update on rcv announcement
 - Entry reclamation
 » Aging and leave
 - Channel change clear

Basics: Audio

- Capture real time Microphone input in digital form
 - Simple processing and packetization
 - Optional coding / compression
 - Store or transmit
- Render packetized Mic stream to speaker
- Render digital coded audio
- Issues
 - Time slotted serial protocol to/from queue
 » State machine
 - Clock domains
 » AC97 vs Core
 - Analog <-> Digital for Audio
 - Signal / Data
 - Audio coding
- Data sheets
 - Audio Codec LM4549A
- Standards / Protocols
 - AC97 Audio Codec
Calynx2: Audio

Clock Domains in EECS150

Clock Domain

- Wikipedia: A clock domain crossing (CDC), or simply clock crossing, is when a signal crosses from one clock domain into another. If a signal does not assert long enough and is not registered, it may appear asynchronous on the incoming clock boundary.
- Clock domain is a collection of digital devices (gates, FFs, registers) operating on a common clock.
- Everything we've learned about synchronous systems is WITHIN a clock domain.
- The key is dealing with multiple clock domains is crossing the boundaries – to be very explicit where and how

Example
Basics: Network Ethenet

- Spool packets to 802.3
 - Mux sources
- Spool packets from 802.3
 - DeMux sinks
- Issues
 - Header formatting
 - FIFOs
- Data sheets
 - LXT975
- Standards / Protocols
 - IEEE 802.3

Basics: Display

- Render pixels
- Render objects
 - Rectangles
 - Text
- Issues
 - Video coding (YCrCb, 4:2:2)
 - Screen Clock Domain
 - Pixel generation
 » Frame buffer vs algorithmic
 - Interface abstraction
 » Pixel queue vs pt
- Data sheets
 - ADV7194
- Standards / Protocols
 - NTSC
 - ITU
 - I2C
Basics: Network Wireless

- Spool packets to 15.4
 - Mux sources
- Spool packets from 15.4
 - DeMux sinks
- Issues
 - Frame Format
 » Header, Payload
 - SPI protocol
 - CC2420 Configuration
 - MAC
 » CCA, BackOff, TX
 » RX / TX state machine
 - Encapsulation
 » No Net / Transport
 » Application Protocol
 - Header, Payload
 - Data sheets
 - CC2420
 - Standards / Protocols
 - IEEE 802.15.4

Basics: Frame Buffer

- Spool FB to Display
- Render pixels to FB
- Render objects to FB
- Issues
 - SDRAM protocol
 » CMD Address / Data
 » Burst
 - Dual Ports
 » Arbitration
 » Req / Grant
 - Simple Data structure
 » Base address, Row
- Data sheets
 - SDRAM Chip
 MT48LC16M16A2TG -7E

FA07 RAM

- We'll use simpler block RAM “object buffer” in Check Pt 2.
 - Screen positions point to character map
- We'll bring SDRAM in later as audio storage
 - Unencoded digital audio streams
 - MPEG coded – ring tones, etc.

Real Time Audio

- Capture and Packetize
- “Silence” suppression
 - Fixed time window per packet => curtail and send
- Bandwidth
 - 8 KHz sampling x 8 bits => 64 kbps , 8 kbps
 » 20% of channel
 - One reasonable active voice per channel
 - 64 byte packet => 1/128 sec => 8 ms of voice
 - ~100 byte frame @ 40 kB/s => 2.5 ms of radio
- Contention Protocol
 - Limit generation rate (min interval)
 - Should have reasonable bidirectional voice
 - May want to suppress low gain origination during active reception
 - Favor reception over transmission
 - Transmit only if “louder” than recent receive window
- Audio compression
 - Provide coding field in packet
Basics: Camera

- Capture real time camera input in digital form
 - Still images
 - Video stream
- Render images to display
- Render mpeg
- Packetize and transmit
- Receive and render
- Collect and store
- Issues
- Data sheets
- Standards / Protocols

Options

- Share tones, songs
- Audio effects
- Integrate game
- Images
- Video
- Synthesizer capabilities
- SMS text

Getting from here to there (1/3)

- Week 6 – Lab 5: Network Digital Audio (Udam)
 - Spool winamp stream from ethernet to audio codec
 - Given ethernet black box and AC97 black box, build connections to Asynch FIFO
 - Key Learnings:
 » mediating two peripheral clock domains and associated protocols through a synchronous intermediate
 » Timing
 - Tools: Chipscope.
- Week 7 – CP 1: RT audio record and replay (Udam)
 - Audio capture on button press from Mic to RAM.
 - Audio play on button press from RAM to speaker
 - Key learnings:
 » Understanding a synchronous serial protocol
 » Digitization of an analog signal
 » Can we look at the data?
 » Simple digital signal processing
 » Detect start of speaking. Detect silence. Track signal energy.
 » Packetization

Getting from here to there (2/3)

- Week 8 – CP 2: Display (Allen)
 - Render canned source to video using Block SRAM
 - Simpler than SDRAM frame buffer
 - Build basic display capability
 - Key learnings
 » NTSC, ITU, Display representation
 » Synching with external source
- Week 9-10 CP 3: Wireless (Shah, Ofer)
 - Stream RT audio to and from 15.4 radio
 - Key learnings
 » SPI protocol, wireless MAC, nasties of wireless, interplay of CBR (audio) and asynchrony (network), bandwidth management
Getting from here to there (3/3)

• Week 11 CP4: Basic i50phone (Shauki)
 – Wireless audio 2-way line
 – Integration of many subsystems through registers, queues, memory data structures, and state machines
 – Basic display and functionality
 – Starts after Midterm II and checked off before Tday

• Week 12-13: i50phone+ (Sarah)
 – Select option that you will implement
 – SDRAM Storage (Allen)
 » Stored audio streams
 » SDRAM controller and memory arbiter
 – Key learnings
 • Bus protocols, memory, implementing complex sequencing in FSMs

• Week 14: Final i50phone+ Project Checkoff
• Week 15: Writeup the Report