
UCB 1� 2007

UNIVERSITY OF CALIFORNIA AT BERKELEY

COLLEGE OF ENGINEERING

DEPARTMENT OF ELECTRICAL ENGINEERING AND COMPUTER SCIENCE

ASSIGNED: Week of 9/17
DUE: Week of 9/24, 10 minutes after start (xx:20) of your assigned lab section.

Lab 3
Verilog Synthesis & FSMs

1.0 Motivation
In Lab1, you became acquainted with Synplify as well as the Xilinx Place and

Route tools. In Lab3, you worked with ModelSim and Verilog to produce a working
design. This lab is designed to give you a chance to bring those skills together to design,
specify and then implement a fully working Finite State Machine in Verilog, using a
combination lock as an example.

For this lab we have given you all of the support modules and design necessary,
your job is to take our high level design and translate it into working Verilog. In order to
do this you will need to force yourself to use good Verilog coding style, acquaint yourself
with the Verilog language and become at least somewhat proficient with the CAD tools.

2.0 Introduction
In this lab you will be making a 2bit, 2 digit combination lock such as those

sometimes found on secure doors. The inputs to the lock consist of two code switches
and three buttons. The code switches (SW9[2:1]) are used to enter the digits in the
combination. The three buttons are Reset (SW1) which is used to reset the lock, Enter
(SW2) which is used to enter a digit of the combination and ResetCombo (SW6) which
would not be accessible normally and which will reset the combination that will open the
lock to a default value.

To operate the lock, a user would:
1. Set the code on SW9[2:1] to the first digit and press enter (SW2).
2. Set the code on SW9[2:1] to the second digit and press enter (SW2).
3. The lock will Open.
4. The user would then press enter (SW2).
5. Set the code on SW9[2:1] to the new first digit and press enter (SW2).
6. Set the code on SW9[2:1] to the new second digit and press enter

(SW2).
7. Cycle back to step 3 above…

When someone gets the combo wrong it would go like this:
1. Set the code on SW9[2:1] to a wrong digit and press enter (SW2).
2. Set the code on SW9[2:1] to any digit (right or wrong) and press enter

(SW2).
3. The lock will show Error
4. The lock will stay in this state until the user presses Reset (SW1).

UCB 2� 2007

3.0 Prelab
Please make sure to complete the prelab before you attend your lab section. You

will not be able to finish this lab in 3hrs otherwise!
1. Read this handout thoroughly. Pay particular attention to section 4.0

Lab Procedure as it describes in detail the circuits you must create.
2. Examine the Verilog provided for this weeks lab.

a. Most of the modules you have seen before.
b. Make sure you understand FPGA_TOP2 as it instantiates your

module, and handles the I/O.
3. Write your Verilog ahead of time.

a. Lab3Lock.v
 i. Your lock FSM, which instantiates the comparator

b. Lab3Testbench.v
 i. A testbench/Code Breaker for the lock FSM
 ii. The testbench will function as a code breaker that goes

through all of the lock inputs until it finds the correct one
and displays that.

 iii. Make sure that this tests as much of the lock and
comparator as possible.

 iv. Refer to past testbenches as a starting point.
4. You will need the entire 3hr lab to test and debug your Verilog!

a. Remember it has to pass simulation and synthesis

4.0 Lab Procedure
Since we expect you to write your verilog ahead of time, and Verilog is nothing

more than a bunch of standard text in a file with a *.v extension you can do this part of
the lab entirely from home in your favorite text editor or by connecting to Kramnik for
remote access to Xilinx tools:

(http://inst.eecs.berkeley.edu/~cs150/fa06/Kramnik/tutorial.php).
Or you can come into the lab and use the tools there. For those of you who like
maintaining a single Xilinx Project Navigator project for each lab, you can even create
the project ahead of time and write your Verilog from within Project Navigator.

Remember to manage your Verilog, projects and folders well. Doing a poor
job of managing your files can cost you hours of rewriting code, if you accidentally
delete your files.

4.1 Lab3Top
The Lab3Top module is very simple and does not need to contain any behavioral

Verilog. The Lab3Top module simply instantiates the Lab3Lock FSM and
Lab3Compare modules, and ties them together with the appropriate signals.

UCB 3� 2007

Code1Reg

==

Code2Reg

==

L
ab

3C
om

p
ar

e

Decode2Decode1

CodeEnter

P
ro

g1
/P

ro
g2

Init

OK1 BAD1

OK2
[Open]

P rog1
[P rog1]

P rog2
[P rog2]

BAD2
[Error]

Code1 &
Enter

~Code1 &
Enter

Code2 &
Enter

Enter

Enter

Enter

~Code2 &
Enter

Enter

Open

Error

Prog1

Prog2

Outputs

Code

Enter

Enter

Prog1

Prog2

Decode1 Decode2

0101

Code[0]Code[1]

DIPSwitches

Enter

La
b3

L
oc

k

L
a
b
3
T
o
p

Reset
Combo

Reset

ResetCombo

Figure 1: Lab3Top Block Diagram

In order to simplify the Lab3Lock FSM and make the whole lock design more
flexible we have separated the FSM and the comparator, which compares the value on
the switches to the digits of the combination. Essentially the code input from the
switches is fed into the Lab3Compare module which determines the Decode1 and
Decode2 signals needed by the Lab3Lock FSM. Based on these and the Enter and
Reset buttons the Lab3Lock tracks its state and generates the appropriate outputs.

Table 1 below shows the inputs and outputs from the Lab3Top module.

Signal Width Dir Description
Code 2 I The code value from dipswitch SW9[2:1]
Enter 1 I The Enter button (SW2)
ResetCombo 1 I Reset the combination to the default (SW6)
Clock 1 I The Clock signal
Reset 1 I Reset the FSM to the Init state (SW1)
Open 1 O Indicates that the lock is open (OK2 state)
Error 1 O Indicates that the wrong combo was entered (BAD2

state)
Prog1 1 O Indicates that the lock will accept a new 1st digit
Prog2 1 O Indicates that the lock will accept a new 2nd digit
LED 8 O Debug outputs, for your use on the board

Table 1: Port Specification for Lab3Top

UCB 4� 2007

4.2 Lab3Lock
In this lab you will be building primarily the Lab3Lock module, a relatively

simple FSM. This module is responsible for maintaining the state of the lock and
generating the outputs to show the lock’s status to the user.

Below are: a table of the inputs and outputs from the Lab3Lock module and a
bubble-and-arc diagram of the finite state machine.

Signal Width Dir Description
Decode1 1 I Indicates that the switches match the 1st digit of the combo
Decode2 1 I Indicates that the switches match the 2nd digit of the combo
Enter 1 I The Enter button (SW2)
Clock 1 I The Clock signal
Reset 1 I Reset the FSM to the Init state (SW1)
Open 1 O Indicates that the lock is open (OK2 state)
Error 1 O Indicates that the wrong combo was entered (BAD2 state)
Prog1 1 O Indicates that the lock will accept a new 1st digit
Prog2 1 O Indicates that the lock will accept a new 2nd digit
LED 8 O Debug outputs, for your use on the board

Table 2: Port Specification for Lab3Lock

Init

OK1 BAD1

OK2
[Open]

Prog1
[Prog1]

Prog2
[Prog2]

BAD2
[Error]

Decode 1 &
Enter

~Decode1 &
Enter

Decode 2 &
Enter

Enter

Enter

Enter

~Decode2 &
Enter

Enter

Figure 2: Bubble-and-Arc Diagram for Lab3Lock

Notice that in Figure 2, there are a number of bits of shorthand notation. First
off, there are no arcs labeled Reset. That is because a high on the Reset input will
ALWAYS return the FSM to the Init state. Also of note is the output specifications in
[]s, where only the outputs which are actually asserted in a given state are shown.

UCB 5� 2007

As a note on optimization, you should examine the relationship between state
changes and the Enter signal. You may be able to simplify your Verilog if you are
clever.

4.3 Lab3Compare
You should keep in mind that this module has been built for you. We are

providing this documentation to make the operation of this module very clear.
It is the responsibility of the Lab3Compare module to generate the Decode1

and Decode2 signals, which indicate that the Code input matches the 1st and 2nd

digits of the combination respectively. Therefore the Lab3Compare module is
essentially a pair of combinational comparators.

However in order to make the combination on our lock programmable, this
module has a pair of registers to remember what the 1st and 2nd digits of the combination
actually are. In order to set up a default combination the ResetCombo input will
forcibly set these registers to 2’b11 and 2’b01 respectively.

In order to program new combinations, when the Prog1 and Enter signals
are high, the register for the 1st digit will store whatever value is on the Code input as
the new 1st digit. Similarly, when the Prog2 and Enter signals are high the register
for the 2nd digit will store the new 2nd digit.

Signal Width Dir Description
Code 2 I The code value from dipswitch SW9[2:1]
Decode1 1 O Indicate that that Code matches the 1st digit of the lock
Decode2 1 O Indicate that that Code matches the 2nd digit of the lock
Prog1 1 I Indicates that the lock will accept a new 1st digit
Prog2 1 I Indicates that the lock will accept a new 2nd digit
Enable 1 I Enable the loading of new combination digits (driven

by the Enter button, SW2)
Clock 1 I The Clock signal
ResetCombo 1 I Reset the combination to 2’b11, 2’b01 (SW6)

Table 3: Port Specification for Lab3Compare

UCB 6� 2007

5.0 LAB 3 CHECK-OFF
ASSIGNED: Week of 2/4

DUE: Week of 2/11, 10 minutes after start (xx:20) of your assigned lab section.

Man Hours Spent Total Points TA Initial Date Time

 / 100 / / 06

NAME SID SECTION

I Quality of Verilog

1 Lab3Top
__________ (8%)

2 Lab3Lock
__________ (12%)

II Full Simulation with Code Breaker __________ (40%)

III Working Synthesized Lock __________ (40%)

RevC – 1/18/2004
Greg
Gibeling

Added errata from Fall 2004
Migrated to Lab3

RevB – 7/10/2004
Greg
Gibeling

Complete Rewrite of Lab3
Based on the old Lab3

RevA Multiple

Original Lab3 from Fa02-Sp04
Spring 2004: Greg Gibeling
Fall 2003: Greg Gibeling
Spring 2003: Sandro Pintz
Fall 2002: John Wawrzynek & L.T. Pang

UCB 7� 2007

