

UNIVERSITY OF CALIFORNIA AT BERKELEY

COLLEGE OF ENGINEERING

DEPARTMENT OF ELECTRICAL ENGINEERING AND COMPUTER SCIENCE

CHECKPOINT 4
Basic i50Phone

1.0 Introduction
Throughout the semester, you have been building the basic components needed

for creating a wireless phone system. In Checkpoint 1, you designed the audio

component, which reads audio input from a microphone and plays it back on your local

speakers. In Checkpoint 2, you designed the display and user interface components. In

Checkpoint 3, you designed a means of transferring generic data between two systems via

wireless communications. In this checkpoint you will put all of these components

together.

The primary goal of this checkpoint is to define a communications protocol that

allows two FPGAs to selectively exchange audio data. This goal involves several steps:

1. Defining the application layer protocol, i.e. giving meaning to the 41-byte

packets that are being exchanged.

2. Designing a communications FSM that handles the handshaking between systems.

3. Designing an intuitive user interface that allows you to connect with another

station.

2.0 Prelab
 The region in the dotted red line shown in the figure below shows the components

that you will be adding in Checkpoint 4.

Figure 1: Checkpoint 4 Additions

 This region encompasses the changes that you will need to make to the previous

checkpoints, and the modules you will be adding:

1. Checkpoint 1 – The audio buffer must allow sending and receiving audio data

from the wireless transceiver.

2. Registry – Users will be coming in and out of channels, and in and out of

calls. A registry is need to keep track of who is connected.

3. Checkpoint 2

a. The input parser must support the complete navigation of the phone

system, and send appropriate messages to the communications module.

b. The video display module must support reading a registry of users in the

channel, a registry of connected users, and a console that displays

messages.

4. Communications – This module ties everything together and handles all of

the handshaking between two stations, and within the local phone system.

3.0 Lab Procedure
Remember to manage your Verilog, projects and folders well. Doing a poor

job of managing your files can cost you hours of rewriting code, if you accidentally

delete your files.

3.1 AudioBuffer.v
 The audio buffer in Checkpoint 1, shown below, only supported local record and

play back. This was implemented by using a large FIFO that stored 8 seconds of voice.

Figure 2: Checkpoint 1 Audio Buffer

 In this checkpoint, such a large FIFO is unnecessary. Instead, you be changing

the functionality to support sending to and receiving from a remote source. To do this,

you will change the design of the audio buffer to look more like the figure below:

Figure 3: New Audio Buffer

 The large asynchronous FIFO in checkpoint 1 will be replaced by two small

asynchronous FIFOs, a single synchronous fifo, and two shift registers. Note that both of

the new FIFOs must remain asynchronous because they are crossing clock domains. For

debugging the new audio buffer, you may choose to support a loopback mode, such that

the microphone input is played back locally.

 Below is a port specification for the new audio buffer:

Signal Width Dir Description

Clock 1 I The 27MHz clock signal

Reset 1 I The reset signal

AudioClock 1 I The audio clock signal

PCM_Request 1 I Request from local AC97 controller for data

FromAudio 32 I Audio data from local audio controller

FromAudioValid 1 I Indicates that FromAudio is valid

ToAudio 32 O Audio data going to local audio controller

ToAudioValid 1 O Indicates that ToAudio is valid

FromWireless 320 I Packet of audio data from transceiver

FromWirelessValid 1 I Indicates that FromWireless is valid

ToWireless 320 O Packet of audio data to be send to transceiver

ToWirelessValid 1 O Indicates that ToWireless is valid

SelfLoop 1 I Enable audio loopback

Table 1: Port Specification for New Audio Buffer.

 We have also provided a small synchronous FIFO (audio_fifo) for additional

buffering. You will need to use this synchronous buffer to buffer data when you are

receiving data from the wireless. When the prog_full (a signal that says when the buffer

is partially full) signal goes high from the audio_fifo, you should have enough audio data

to begin streaming it to the audio chip. If the fifo is every empty, you should wait to

buffer audio until the prog_full signal comes high again.

3.2 UserInputParser.v
 This module will now be extended to support complete navigation of the phone

system, including requesting to establish calls with users, accepting and rejecting calls,

and changing the display appropriately. This module must keep track of two cursor

positions: one for the users in the channel, and one for the users connected in a call. The

input parser must support obey the following constraints:

1. Only allow the cursor of a particular region to change when the focus is on

that region.

2. When the cursor is on a valid user in the Channel region and “A” is pressed:

a. Change the focus to the console

b. Send a call request and wait for a response

i. If “B” is pressed, cancel the request and change focus back to the

Channel region

ii. When a connection is either established or refused, change the focus to

the Channel region.

iii. Ignore incoming calls while requesting a call.

3. When the cursor is on a valid user in the Connection region and “B” is

pressed:

a. Send a disconnect signal

b. Focus remains in the same region

4. When there is an incoming call, and you are not currently requesting a call

a. Change the focus to the console

b. If “A” is pressed, send “Accept Call” message and return focus to Channel

c. If “B” is pressed, send “Reject Call” message and return focus to Channel

The table below is a port specification for the new input parser module.

Signal Width Dir Description

Clock 1 I The 27Mhz Clock signal

Reset 1 I The Reset signal.

(N64 Buttons) 30 I Buttons from N64ButtonParser.v

SpeakerVolume 5 O Speaker volume

SpeakerMute 1 O Speaker mute

MicVolume 5 O Mic volume

MicMute 1 O Mic mute

Channel 4 O Wireless channel* (See note below)

Focus 2 O Region focus

ChanCursor 3 O Position of the channel cursor

ConnCursor 3 O Position of the connection cursor

ChanSelectValid 1 I Indicates that the name that the channel cursor is

pointing to a valid user entry

ConnSelectValid 1 I Indicates that the name that the connection cursor

is pointing to a valid user entry

IncomingCall 1 I Indicates an incoming call

AcceptCall 1 O Accept the incoming call

RejectCall 1 O Reject the incoming call

RequestCall 1 O Request to connect with the user at ChanCursor

DisconnectCall 1 O Disconnect from the user at ConnCursor

ConnEstablished 1 I Indicates that a call was successfully established.

CallRejected 1 I Indicates that a call was not successfully

established.

Table 2: Port Specification for New Input Parser Module

* Note: You do not need to support channel changing in this checkpoint. You may

simply Reset to your assigned channel.

Note that this module does not have to keep track of valid entries. This is done in

the Registry module described below. Thus, the Registry notifies the input parser

whether or not a cursor is on a valid entry.

3.3 Registry.v and VideoDisplay.v
 You will need a module that keeps track of which users are in the channel, and

which users you are connected to. This module maintains not only the user names, but

also the source addresses associated with each user. This information is needed to notify

the communications module where to send a call or disconnect request. For simplicity,

the registry keeps track of valid entries through refreshes and timeouts – there is no

need to support a way of explicitly removing an entry. Thus, when you want to

disconnect from a call, you simply send the disconnect signal to the communications

controller, which will stop sending packets to the user, and the entry will simply time out.

For the final product, set the timeout period to 5 seconds, but for simulation and testing

purposes, you may set it lower.

 When a new user arrives, add the name and associated source address to any

empty entry. You do not have to support a registry with more than 8 entries.

 Depending on how you implemented the video display module in Checkpoint 2,

you may either place the registry inside the video display module or implement it as a

separate unit. In either case, the registry combined with the video display module must

support the following interface with the communications and input parser modules:

Signal Width Dir Description

AnnounceUsername 64 I Corresponds to the username of the station that

just sent an Announce packet (see below)

AnnounceSource 8 I Corresponds to the source address of the user that

just sent an Announce packet

AnnounceValid 1 I Indicates that AnnounceUsername and

AnnounceSource are valid.

CallUsername 64 I Corresponds to the username of the station that

just established a call.

CallSource 8 I Corresponds to the source address of the user that

just established a call.

CallValid 1 I Indicates that the user specified by CallUsername

and CallSource has established an exclusive

connection for voice communication.

ChanCursor 3 I Channel cursor position from input parser

ChanSelUsername 64 O Corresponds to username at ChanCursor

ChanSelSource 8 O Corresponds to source address of user at

ChanCursor

ChanSelValid 1 O Indicates that the entry at ChanCursor is valid,

and ChanSelUsername and ChanSelSource are

valid.

ConnCursor 3 I Cursor position from input parser for connection

region.

ConnSelUsername 64 O Corresponds to username at ConnCursor

ConnSelSource 8 O Corresponds to source address of user at

ConnCursor

ConnSelValid 1 O Indicates that the entry at ConnCursor is valid,

and ConnSelUsername and ConnSelSource are

valid.

IncomingCall 1 I Indicates an incoming call from CallUsername.

ConnEstablished 1 I Indicates a call was successfully established

RequestCall 1 I Indicates a call request to ChanSelUsername.

CallRejected 1 I Indicates that the call was rejected.

DisconnectCall 1 I Indicates a request to disconnect from

ConnSelUsername.

ConnTimedOut 1 I Indicates a call timed out.

Table 3: Interface of Registry with Communications and Input Parser

You may use either the provided RAM blocks or simple registers to keep track of

user entries.

In addition to storing and display user names, your system must also be able to

display several different types of messages to the console region. The console must

remember up to 8 lines of messages, where each line is 32 ASCII characters. Once

the console fills up, the newest message will push the oldest one out, creating a scrolling

effect for the history. The following is a list of messages that your module will display:

Message Condition

Call From: Username Acc(A)/Rej(B) For incoming calls from Username

Dialing User: Username Cancel(B) For outgoing calls to Username

Connection Established A connection has been successfully

established.

Connection Rejected Your call was rejected

Connection Terminated You request to disconnect from a

connected user

Connection Timed Out Your call timed out

Table 4: Messages to Display

3.4 Communications.v
 This is the main module you will build for this final checkpoint. This module

defines the application layer protocol and handles all handshaking between two systems.

We strongly recommend that you design this module completely before writing any

Verilog for it. Any corner cases you may have forgotten during design may cause

you many hours of redesigning.

 Recall from Checkpoint 3 that your transceivers exchanged packets with 41 bytes

of payload. The first byte will be defined as the application layer header, and the

remaining 40 bytes will be the application layer payload. The following table describes

the format of the 41-byte packet:

Header

(1 byte)

Type Payload

(40 bytes)

Description

8’h0 Announce {256’hX, Username} Broadcast (send to 0xFF) your presence

to the channel. Send every 250ms

except when in a call.

8’h1 Init Call {256’hX, Username} Represents a call request.

8’h2 Accept Call {256’hX, Username} Accept a call request

8’h3 Reject Call {256’hX, Username} Reject a call request.

8’h4 Ack Init {256’hX, Username} Acknowledgment of “Init Call,” but is

neither an accept nor reject (see below)

8’h5 Data Audio Data Payload contains audio data

8’h6 Ready 320’hX Acknowledgment of “Accept Call.”

Also used to keep active connection

alive in the absence of data.

Table 5: Packet Format

Your communications module must support the following behavior:

1. Sit idle and receive packets by default.

2. Send an Announce packet every 250 milliseconds.

3. If an Announce packet is received at any point, notify the Registry/VideoDisplay.

4. If you initiate a call request, do the following:

a. Send Init Call packet and wait for response

i. If response is Ack Init, return to (a)

ii. If response is Accept Call, send a Ready packet and enter a call session.

iii. If response is Reject Call, return to idle receive state.

iv. If you press “B” (cancel), return to idle receive state

v. If you receive no response for 1 second, return to idle receive state.

b. During the Init Call/Ack Init exchange, you do not need to send Announce

packets, but you must still be able to receive and handle them. You may

ignore non-Announce packets from other sources.

5. If you receive an Init Call during your idle receive state, do the following:

a. Send Ack Init packet and packet and wait for response

i. If you press “A” (accept), send an Accept Call packet and enter a call

session.

ii. If you press “B” (reject), send a Reject Call packet and return to idle

receive state.

iii. If you receive an Ack Init packet, return to (a).

b. During this exchange, you do not need to send Announce packets, but you

must still be able to receive and handle them. You may ignore non-Announce

packets from other sources.

6. During a call session,

a. If you receive an audio data packet, notify the audio buffer and reset the

timeout counter.

b. If you receive a Ready packet, reset the timeout counter

c. Send audio data whenever it is ready.

d. Receive Announce packets and notify Registry/Video Display

e. Optionally send Ready packets to keep the connection alive in the absence of

audio data (if you choose to implement silence suppression to reduce

bandwidth usage).

f. If you manually disconnect the call, return to the idle receive state.

g. If neither audio data nor Ready is received in 1 sec, return to idle receive state.

The following table defines the interface with the registry, input parser, and audio buffer:

Signal Width Dir Description

RequestCall 1 I Represents a call request

CancelRequest 1 I Cancels a call request

DisconnectCall 1 I Disconnect from a call session

IncomingCall 1 O Indicates an incoming call

AcceptCall 1 I Accept a call request

RejectCall 1 I Reject a call request

CallRejected 1 O Call request was rejected by remote user

ConnEstablished 1 O Call request was accepted by remote user

ConnTimedOut 1 O Call session timed out

MyUsername 64 I Your username

MySourceAddress 8 I Your source address

DestinationAddress 8 I Destination address for call requests

AnnounceUsername 64 O Username from Announce packet

AnnounceSource 8 O Source address associated with

AnnounceUsername

AnnounceValid 1 O Indicates AnnounceUsername and

AnnounceSource are valid

CallUsername 64 O Username of user in call session

CallSource 8 O Source address associated with CallUsername

CallValid 1 O Indicates CallUsername and CallSource are valid

AudioDataRX 320 O Received audio data

AudioDataRXValid 1 O Indicates AudioDataRX is valid

AudioDataTX 320 I Audio data to transmit

AudioDataTXValid 1 I Indicates AudioDataTX is valid

Table 6: Interface of Communications with Registry, Input Parser, and Audio Buffer

 The transceiver from Checkpoint 3 should be instantiated within the

Communications module.

 The following table illustrates a typical exchange of packets to establish a call

between two stations.

CALLER RECEIVER CALLER UI RECEIVER UI

ANNOUNCE .
 Populate CALLER in

Channel User List

 ANNOUNCE
Populate RECEIVER in

Channel User List

ANNOUNCE .
 Persist CALLER in

Channel User List

. .
Persist RECEIVER in

Channel User List

. .

. .

INIT CALL . Dialing User RECEIVER Incoming Call CALLER

 ACK INIT

INIT CALL

. ACK INIT

. .

. .

. .

. ACCEPT CALL

Connection Established

Populate RECEIVER in

Call User List

READY

 Connection Established

Populate CALLER in

Call User List

 DATA

DATA

 DATA

DATA

 No Response

DATA .

 .

DATA .

 . Possible Timeout

DATA . Connection Timed Out

(Disconnect) .

. . Depends on direction

. . of lost packets

. .

. .

. . Possible Timeout

Table 7: Example of Handshaking and Packet Exchange

4.0 Requirements
 Your system must satisfy the following requirements:

1. All of the basic user interface specifications described above

2. Ability to receive Announce packets during a conversation

3. Ability to disconnect gracefully from a call

4. Persistent 2-way communication in a clear channel between two stations using

the same bit file.

a. In a clear channel, communication must not randomly end within a minute

b. You do not need to implement n-way communication, where n > 2.

c. You do not need to support 2-way communication in a channel where a

call is already occurring.

5. Latency between speaking into microphone and hearing on remote station

must be less than 1 second.

6. Your solution does not need to be compatible with the sample TA solution.

4.1 Extra Credit Features
 Notice in the packet format table that we only defined headers for 7 out of 256

possible values. This leaves plenty of room for extensibility. However, do not start

working on extra credit features until you have completed the basic requirements

listed above. Any extra features added to a system that doesn’t satisfy the basic

requirements will not count.
 Extra credit is worth up to 20% of your entire course project grade and will be

applied post-curve.

 The following is a list of possible extra credit features

1. Text messaging

2. Talk with more than one person simultaneously

3. Audio effects (e.g. reverberations)

4. Using the console region for a shared game (e.g. Pong, Tetris, Guitar Hero)

5. Record and play back a long conversation using SDRAM

6. Ring tones

7. Audio/video conferencing

8. Anything special, cool, clever, creative, unique, and/or challenging

4.2 Additional Information
 Note that we will not be providing any skeleton Verilog files for this

checkpoint because the additions in Checkpoint 4 are design-dependent. Several of

the files you will be modifying are from previous checkpoints (AudioBuffer.v and

VideoDisplay.v), so you already have the basic structure for these modules. We have

simply defined the minimal additions you will be making to those modules in this

document. The only files we will be providing are fifo_async.v, which is a small

asynchronous FIFO for crossing audio/system clock domains, and audio_fifo.v, which is

a synchronous FIFO for additional audio buffering if you need it.

You may choose to implement Registry.v either with the console and registry of

users as part of the VideoDisplay unit or as a separate unit. Several groups have already

begun implementing their own registry system inside VideoDisplay, and we will not

force them to change their design.

The interface between the Communications module and the rest of the system has

been fully specified above. However, you may choose to implement a different interface

or a different protocol altogether. If you come up with a better protocol that better

utilizes the available bandwidth, feel free to implement it. However, your system

must still satisfy the basic requirements listed above.

Thus, pick your favorite FPGA_TOP2+.v file and add to it.

