
 Name:____________________

EECS150 FA04 Mid II Page 1 of 9

EECS150: Components and Design Techniques
for Digital Systems

University of California
Dept. of Electrical Engineering and Computer Sciences

Mid Term 2 – version A Fall 2004

Last name: __________________________ First name_______________________
Student ID: _________________________ Login: ____________________

Lab meeting time: ________________ TA's name: ____________________
(Sorry to ask this next question, but with 100 students packed closely together there may be a
wide range of behavior.)
Student to my left is ________________________ ___________________
Student to my right is ________________________ ____________________

No notes. No calculators! This booklet contains 9 numbered pages, including room to show your
work. Please, no extra stray pieces of paper. The exam contains 5 substantive questions and 100
points, so just over 1 point per minute. Browse through the questions before you start. You have
1.5 hours, so relax, work thoughtfully and give clear answers. Good luck!

I certify that my answers to this exam are my own work. If I am taking this exam early, I
certify that I shall not discuss the exam questions, the exam answers, or the content of the
exam with anyone until after the scheduled exam time. If I am taking this exam in
scheduled time, I certify that I have not discussed the exam with anyone who took it early.

Signature: ______________________________________

Problem 1 [15]
Problem 2 [20]
Problem 3 [15]
Problem 4 [20]
Problem 5 [30]

Total [100]

 Name:____________________

EECS150 FA04 Mid II Page 2 of 9

Problem 1 (15). Arithmetic Circuit Design

a. You are to build a POPCOUNT unit, shown below, which takes a single 8-bit
input and produces a 4-bit output that is the number of bits that are 1 in the input.
You are to construct it out of Full Adder (FA) and Half Adder (HA) blocks, not
logic gates. Use as few FA’s and HA’s as possible. Clearly label your design.

b. If you generalize your approach, how does the critical path of your design

compare to that of an n-bit ripple carry adder? n-bit CLA?

Many solutions put all inputs into a Carry Propagate Adder.
The important part of the solution was to correctly combine bits with like place values.
That is to say bits with a 20 significance cannot be grouped with bits with a 21
significance…
Other possible solutions involved using a balanced binary tree of 2, 2 and then 3 bit
adders. However many people claimed O(log(n)) or O(n) performance, however the real
performance of this tree is slightly less than O(log2(n))
Make sure you understand what a half-adder and full-adder are. Neither is a ripple carry
adder.

4 8
in out

POPCOUNT

4

 a b ci

co s
FA

 a b

co s
HA

 a b ci

co s
FA

 a b ci

co s
FA

 a b ci

co s
FA

 a b

co s
HA

 a b

co s
HA

1s
2s 2s 4s

8s 4s
2s

4s

 Name:____________________

EECS150 FA04 Mid II Page 3 of 9

Problem 2 (20). Circuit Delays

Determine the maximum clock rate for the circuit shown below. Assume the following:

(1) The primitive inverter delay is 100 ps. All wire delays are 0.
(2) The primitive delay of each gate is the number specified inside the gate. It is in

units of primitive inverter delays.
(3) The actual delay of a gate in the circuit is a linear function of its primitive gate

delay and its fanout: Actual delay = primitive delay + 0.25 * (# of fanouts)
a. Any logic gate, flip-flop or output port counts as one fanout of a gate.
b. For example, the XOR gate in the circuit below has a fanout of 2 (output

port and inverter).
c. The two inverters in the circuit have a fanout of 1 (flip-flop input).
d. Flip-flop outputs incur fanout-related delays, just like gates.

(4) Flip-flop setup time and clock-to-Q time is 2 inverter delays.
(5) The maximum skew between any two clock inputs is 50 ps.

State clearly any other assumptions you make. Show your work.

Longest path: FF-AND-NOR-XOR-INV-FF
Delay = 3 + 0.25(2) + 2 + 0.25(1) + 4 + 0.25(2) + 1 + 0.25(1) = 11.5 inv delays
A path is defined and any series of combinational gates from any flip-flop output to
any flip-flop input. This is not necessarily the delay around a loop. A path
CANNOT GO THROUGH TWO FLIP-FLOPS.

FF delay = 2 + 0.25(2) + 2 = 4.5 (clock-to-Q + fanout delay + setup)

Clock skew = 0.5
Only applies if the path starts and ends at a different register.

Total delay = 11.5 + 4.5 + 0.5 = 16.5 inv delays or 1650 ps.
Maximum Frequency = 1/1650ps = 606MHz

 Name:____________________

EECS150 FA04 Mid II Page 4 of 9

Problem 3 (15). Memory

Describe each of the steps involved in a DRAM read operation. (We are looking for a
single brief sentence or two for each major step.)

• Prior to the read, OE_l and WE_l are disasserted (OE_l = 1, WE_l = 1)
and the DRAM chip is essentially inactive.

• Row address is provided. After row address becomes valid, RAS is asserted

(RAS = 1)

• Column address is provided. After Column address becomes valid, CAS is

asserted (CAS = 1)

• Output enable is asserted (OE_l = 0)

• Value of selected bits causes a small change in the precharged value on the line

which is detected and amplified by the output driver or “sense amp”

• After a delay (of length specified by the data sheet), output data is latched

• Internally, the values read from the selected row are restored

• RAS and CAS are de-asserted

 Name:____________________

EECS150 FA04 Mid II Page 5 of 9

Problem 4 (20). Understanding verilog

It is your job to find all 10 errors in the verilog fragment below, and suggest

corrections for each error. The exact function of the FSM doesn’t matter.
An error is counted as anything where a single continuous block of text is

missing or wrong. This means that an error may span multiple lines, but there will be no
correct text between the lines.

module ShiftRegister(Clock, Reset, SIn, POut);
 input Clock, SIn, Reset;
 output [7:0] POut;

 reg [7:0] POut;

 always @ (posedge Clock) begin
 if (Reset) POut <= 8'h00;
 else POut <= {POut[6:0], SIn};
 end
endmodule

module FSM(In, Out, OutValid, Clock, Reset);
 input In, Clock, Reset;
 output [7:0] Out;
 output OutValid;

 reg [1:0] CurrentState, NextState;
 reg ShiftReset, OutValid;

 ShiftRegister Shifter(.SIn(In),
 .POut(Out),
 .Clock(Clock),
 .Reset(ShiftReset | Reset));

 parameter STATE_Idle = 2'h0,
 STATE_A = 2'h1,
 STATE_B = 2'h2;

 always @ (posedge Clock) begin
 if (Reset) CurrentState <= STATE_Idle;
 else CurrentState <= NextState;
 end

 always @ (CurrentStat e or Out or In) begin
 NextState = CurrentState;
 OutValid = 1'b0;
 ShiftReset = 1'b0;

 case (CurrentState)
 STATE_Idle: begin
 if (In) begin
 NextState = STATE_A;
 ShiftReset = 1'b1;
 end
 end
 STATE_A: begin

���������	
	���Reset was
neglected as an input. This was not an
intentional mistake, but you will still
receive points for it.

���������	
	���Must be declared
as a “reg” if it is to be a register later.

���������	
	���Used to be
“Reset or Sin” which doesn’t work.
We need a register.

���������	
	���Reset used to
be left out. Every register needs to have a
“Reset” input.

���������	
	���Should be non-
blocking assignment. Blocking
assignment only works for combinational
always blocks.

���������	
	���We forgot a
semicolon here. This was not a
purposeful error on our part, but you still
get credit if you caught it.

���������	
	���NextState
must also be a “reg” even though it is
not a register. This is because it is
assigned in an always block.

���������	
	���These
connections are not in the same order as
the port list for the ShiftRegister
module. That means you need to specify
which connection goes to which port. (Or
reorder the connections)

���������	
	���The signals Out
and In were missing from this
sensitivity list.

���������	
	����Some default
value should be specified here in case a
proper value is not given later. This will
prevent latches.

 Name:____________________

EECS150 FA04 Mid II Page 6 of 9

 if (Out[0] & ~Out[7]) begin
 NextState = STATE_B;
 OutValid = 1'b1;
 end
 end
 STATE_B: begin
 ShiftReset = 1'b1;
 if (~|Out) NextState = STATE_Idle;
 end
 default: begin
 NextState = 2'bxx;
 OutValid = 1'bx;
 ShiftReset = 1'bx;
 end
 endcase
 end
endmodule

���������	
	����Used to be
“Valid” which is not an actual signal

���������	
	����FSMs must
always include a default block to ensure
that 1) there are no latches and 2) the
logic generated by this always block
can be optimized properly.

 Name:____________________

EECS150 FA04 Mid II Page 7 of 9

 Problem 5 (30). Controller design

In 1976 Seymore Cray introduced the Cray-1 Supercomputer that ran at an
amazing 80 MHz and had all the characteristics that we associate with modern RISC
processors. It also introduced the concept of vector registers, which are only beginning to
appear in modern designs. In this problem you will design a portion of a vector unit.

Your machine has 8 vector registers, each containing 32 words of 32 bits in width.
It has an adder unit that takes two 32-bit inputs and generates a 32-bit result. An
additional VLENGTH register specifies the number of elements that are to be added. Thus
the operation: VADD rd, rs, rt implements

FOR i from 0 to VLENGTH-1

REG[rd[i]] := REG[rs[i]] + REG[rt[i]]

 Name:____________________

EECS150 FA04 Mid II Page 8 of 9

a. Starting with the datapath skeleton shown below, you are to implement a controller for
the VADD operation.

The vector registers are stored in a synchronous SRAM with two ports: port A is a
read port and port B is a read/write port. The WriteEnable input (WEB_) indicates whether
the operation on port B is a write. The vector register numbers for the sources and
destination, as well as VLENGTH, are provided to you in registers.

Complete the datapath with MUXes, tristates, wires, counters, latches, adders,
flipflops or other components as required to implement the VADD operation.

 Name:____________________

EECS150 FA04 Mid II Page 9 of 9

b. Starting with the verilog skeleton below, implement your controller for your datapath.

module VADD(Clock, Reset,
 WEB_, OEB_,
 TristateEnable, Op, AddrBSelect,
 WriteBack, CountEnable, Done);

 input Clock, Reset;

 output WEB_, OEB_;
 output TristateEnable, Op, AddrBSelect;
 input WriteBack;
 output CountEnable;
 input Done;

 parameter OP_Add = 1'b0,
 OP_Sub = 1'b1;

 assign WEB_ = ~(WriteBack & ~Done);
 assign OEB_ = WriteBack | Done;

 assign TristateEnable = WriteBack;
 assign Op = OP_Add;
 assign AddrBSelect = WriteBack;

 assign CountEnable = ~Done;
endmodule

For this problem we accepted answers with either this simple Verilog based
controller, and the more complicated datapath shown above or a similar solution but with
a simpler datapath and a more complicated controller. The solution here shows the ideal
division between datapath and controller, however we did not require you to divide it this
way. In a real system the division would depend also on the other commands which had
to be implemented on the datapath.

Those of you who took 3 cycles per addition also received full credit

Grading Scale
 Datapath
 3 - 3 Data busses to addr
 3 - Tri-state for D/IOB
 3 - Concatenate addresses
 3 - Mux for the ADDRB line
 1 - Correct operation (Add/Sub)
 3 - Comparator for counter

 Control
 3 - Counter
 3 - Read State/Write State
 2 - Idle State/Done State

