EECS 150 Spring 2006

Checkpoint 4

University of California at Berkeley

College of Engineering

Department of Electrical Engineering and Computer Science

	Assigned / Design Review:
	Week of 11/7

	Due:
	Week of 11/28, 10 minutes after start (xx:20) of your assigned lab section.

Checkpoint 4
Game Engine: Wireless Battleship

1.0 Motivation

This final checkpoint is intended to allow you to take all the hard work you’ve done this semester and bring it together to make a fully-functional game. We want you to have a little bit of fun with this checkpoint and so, while we will provide basic requirements for the game engine, you are free to implement extra “bells and whistles” to make the project that much more exciting. To reward you for going above and beyond, we will award extra credit proportional to the amount of extra work that you put in, up to a certain limit.

In addition to just coming up with the design for the game engine, this checkpoint also involves wiring up the entire project. You will use your modules from checkpoint one (N64 controller) to control your cursor. You will use checkpoint three (CC2420) as communication links. Then finally, you will use your checkpoint two (Video) to display your game onto a standard LCD monitor.

In this checkpoint, you will learn how to design communication protocols to setup the system and how to build reliable communication out of unreliable communication media.

2.0 Introduction – Brief Game Rules
In order to enable inter-group play, we will define a set of general game rules. Feel free to make changes to this if you decide to add extra credit features. However, remember that you will also have to turn in a version that can play against the TA solution; implement battleship according to our rules first, save those files, and then be creative.

Each player will place twelve ships. These ships are of varying length and the distributions of these lengths are described in the table below:
Table 1 – Battle Ship Pieces
	Ship Name
	Ship Length
	Number of Ships
	Index

	Battleship
	5
	1
	11

	Cruiser
	4
	3
	8-10

	Destroyer
	3
	4
	4-7

	Submarine
	2
	4
	0-3

Game play will start when the client announces his first shot (server-client protocol will be explained below) and end when one of the players has all of his ships sunk. Players will take turns announcing their shots and reply only with a hit, miss, or sunk message. It is the job of the local engine to keep track of the status of the game, including hits, misses, win/loss history, and ships sunk.
Students will not be expected to conform to a uniform interface but are expected to follow a set of guidelines. Specifically, they are expected to:

· display the boards (both the player’s and the opponent’s), ships sunk, shots fired, win/loss history, game status, and wireless information;
· allow the user to configure channel, source address, destination address, and whether the board is a server or a client via the FPGA;
· allow the user to navigate the board using the Dpad on the N64 controller;
· allow the user to “soft reset” the game via the N64 controller or FPGA.
In addition to the GUI, the user should also be permitted to interact with the system via switches on the board. Specifically:

· depressing SW1 should hard reset the board;
· SW9-{1-4} should configure the default channel upon reset;
· SW9-5 should configure whether the system should act as a server (OFF) or as a client (ON) ;
· SW10-{1-4} should configure the default source address upon reset;
· SW10-{5-8} should configure the default destination address upon reset.

Augmentations to the GUI can be made by students individually; extra credit will be given for notable features such as:

· menus;
· animation;
· detailed ship icons, etc.
A more detailed extra credit list with approximate point rewards will be published later.
3.0 Prelab

Please make sure to complete the prelab before you attend your lab section. You will not be able to finish this checkpoint in 3hrs!
1. Read this handout thoroughly.

a. Pay particular attention to the following of this section as it describes what you will be doing in detail.

2. Start your design ahead of time.

a. Begin with schematics and bubble-and-arc diagrams
b. Start building your testbench early
i. Perhaps have one person design the module and the other design the testbench
3. You will need much more than the 3hr lab!

a. You will need to test and debug your Verilog thoroughly.

b. You must build a reliable interface with a real hardware component!

4.0 System Block Diagram

More or less, you design will look similar to the following block diagram. However, you are free to create other implementations. We provide it here for your reference and also for the ease of describing game engine interface.

[image: image1]
4.1 Game Data

In our implementation of Battleship, each player is given 12 ships of varying sizes. During gameplay, you must keep track of which of these ships you have sunk and which of your ships your enemy has sunk.

Furthermore, Battleship involves two boards, each of which will be 16x16. Each square must contain the following information:

· Ship number (0 through 11),

· Square type (none, head, midsection, tail, or unknown); the purpose of these types are described below,

· Status (hit or miss).

When displaying your board onscreen, we would like you to display different glyphs depending on what kind of ship and what part of the ship is at each square. For example, if you have a length-five ship arranged horizontally, we expect to be able to see something like:

[image: image2.png]

You do not, however, have to distinguish between the various midsection parts of a ship. Note that, when you hit an enemy ship, your opponent does not announce to you which section of the ship you’ve hit; in that case, that square need only be displayed as hit. On the other hand, if the enemy has hit one of your ships, the hit square must still show the section of the ship, somehow marked as hit.

In addition to the board and ship, you must keep track of the number of times you have won and the number of times you have lost. Note that each game of Battleship may be played with a different opponent; we don’t want statistics per opponent, just the number of times you’ve won (against any opponent) and the number of times you’ve lost (against any opponent).

An optional but recommended addition is some kind of message system whereby you can report events (e.g., “Enemy battleship sunk!”) to the player. If you do not have a message system, you still need to somehow let the user know that important events have occurred.

Although we have given you a high-level overview of the type of data that you need to track, some aspects may still seem vague. We recommend that you consult the TA sample solution if anything still seems confusing. As for the actual representation of the game data, you may choose anything you deem appropriate; however, to ensure that you don’t struggle too much with it during implementation, we ask that you thoroughly think out your representation and include it in your design document.

4.2 Wireless Protocol
The wireless protocol will be relatively straightforward, primarily due to the fact that communication is not real-time. Communication can be partitioned into three phases: an initialization phase in which a client and a server exchange information and start a game, a ship-setting phase in which the players place their ships while keeping communication open between the two sides, and a game play phase in which shots will be traded between the two users until all of a player’s ships are sunk. In order to ensure reliability, every packet sent is retransmitted three times. This adds to the robustness of the design but also requires extra attention to detail when receiving.
4.2.1 Initialization
[image: image3.jpg]GE_|Initialization

InitDone Set

Transceiver
Inputs

Server Idle

/Send Game
Accept

Get Game
Accept

Upon reset, the system should pull client/server information from the dipswitches and initialize the channel accordingly (see section 2.2 for dipswitch mapping). It should then enter an appropriate state: clients will continually send game request packets (either broadcasted or directed to a known destination address) until a server sends them an acceptance packet (sent to the client’s address). Note that in order to play, there must be a client and a server actively listening to the same channel. Also, the source and destination addresses taken from the dipswitches are only valid for the game request packets. You must change the addresses sent to the transceiver upon receipt of a game packet from another player.
The server immediately moves to ship-setting mode and waits for the client’s first game-set packet, while the client must receive an acceptance packet before it proceeds to ship-setting mode and sends the first packet of that mode. If at any time the client or server does not receive an expected packet after a timeout, it returns to initialization.

Table 2 – Initialization Packet Format

	Packet Type
	Header (4 bits)
	Index (12 bits)
	Data (16 bits)

	Game Request
	4’hF
	12’hxxx
	16’hxxxx

	Game Accept
	4’hB
	12’hxxx
	16’hxxxx

4.2.2 Ship-setting
Since placing ships takes an arbitrary amount of time, communication must be kept alive between the client and the server. Thus, upon entering ship-setting mode, the client sends out its first keep-alive (KA) packet, waiting on an acknowledgement from the server. If it does not receive this acknowledgement, then it returns to initialization. If it does, then the client will periodically send out keep-alive packets, returning to initialization if the server ever fails to respond. In order to differentiate between keep-alive packets of separate games, a KA index will be sent along with the KA packet and incremented for every packet sent. KA’s should be resent every .25 seconds.
Once the client has finished setting up its ships, it sends a set-done packet in place of a KA packet, to which the server may respond with either its own set-done packet (if it has finished) or with a KA-acknowledgement packet. If the server finishes setting up first, he will send server send-done packets in place of KA-acknowledgement packets. As soon as both the client and the server are done setting up their ships, the server will wait upon the client’s first game-play packet.
[image: image4.jpg]GE GameSet FSM

InitDone

Server Idle

InitDone

Send
Response

KA or CSetDone

Both Players
Done

Timeout

Both Players
Done

Table 3 – Game Setup Packet Format

	Packet Type
	Header (4 bits)
	Index (12 bits)
	Data (16 bits)

	KA (C)
	4’h1
	12’h(KA Index)
	16’hxxxx

	KA Ack (S)
	4’h2
	12’h(KA Index)
	16’hxxxx

	Set Done(C)
	4’h3
	12’h(KA Index)
	16’hxxxx

	Set Done (S)
	4’h4
	12’h(KA Index)
	16’hxxxx

4.2.3 Gameplay
Gameplay mode begins with the client making the first shot and the server waiting on a move. After this first shot, there will be no difference in the client and server. Gameplay can then be separated into a waiting turn and a shooting turn. Each move is structured the same: the person whose turn it is sends KA packets, which must be acknowledged, until he makes a move. Hint: this structure lends itself to an active parallel state machine implementation, one to communicate with the transceiver and one to communicate with the video ram. When the player takes his shot on the grid, he waits for a response from his opponent and then updates his board accordingly (the response can be a hit, miss, or sunk packet). Once he receives this response packet, he updates his game index and moves to the waiting phase of gameplay. During the waiting phase, a player waits on KA packets or shot packets. If a shot packet is received, the player should respond with a hit, miss, or sunk packet and also update his board information accordingly. When either player sinks the other’s last ship, a simple sunk packet can be sent. Assuming that both boards have been tracking number of ships sunk, no further communication is needed to signal a game over. The player’s win/loss total should be updated, and a soft reset should reset the game to the initialization phase.
Table 4 – Game Play Packet Format

	Packet Type
	Header (4 bits)
	Index (12 bits)
	Data (16 bits)

	KA
	4’h1
	12’h(Game Index)
	16’hxxxx

	KA Ack
	4’h2
	12’h(Game Index)
	16’hxxxx

	Shot
	4’h5
	12’h(Game Index)
	{8’hxxxx, Row, Col}

	Miss
	4’h6
	12’h(Game Index)
	16’hxxxx

	Hit
	4’h7
	12’h(Game Index)
	16’hxxxx

	Sunk
	4’h8
	12’h(Game Index)
	{12’hxxxx, ShipIndex}

4.3
GameEngine.v
This is the main module you will need to build for this checkpoint. Shown in Table 1 below is a sample port specification list for GameEngine.v. You are free to use whatever i/o ports necessary in order to wire up with your other checkpoints and/or to implement other features.

	Signal
	Width
	Dir
	Description

	Clock
	1
	I
	System clock

	Reset
	1
	I
	System reset

	BoardReady
	1
	I
	Indicate that the video RAM initialization is done

	SoftReset
	1
	I
	Reset various modules, incl. VRAM, Transceiver

	N64ButtonStatusP1
	30
	I
	User input from N64

	SendReady
	1
	I
	Transceiver is ready to transmit.

From Transceiver::Ready

	Send
	1
	O
	Begin to transmit.

To Transceiver::Start

	SendData
	32
	O
	The payload needs to be transmitted.

	RecReady
	1
	I
	New packet is received.

From Transceiver::NewData

	Rec
	1
	O
	Read data from transceiver.

To Transceiver::REn

	RecData
	32
	I
	Data received from transceiver.

From Transceiver::Out

	Channel
	4
	O
	The communication channel number

To Transceiver::Channel

	CNSDip
	1
	I
	ClientNotServer option from SW9

	SrcAddr
	8
	I
	Source address from SW10

	DestAddr
	8
	I
	Destination address from SW9

	DestAddrCC
	8
	O
	Destination address to Transceiver::DestAddr

	SrcAddrIn
	8
	I
	Source address associated with the received packet. From Transceiver::SrcAddrOut

	DestAddrIn
	8
	I
	Destination address associated with the received packet. From Transceiver::DestAddrOut

	RMyPosValid
	1
	I
	Indicate the RPosData is valid. You could read RPosData immediately.

	RMyPosData
	2
	I
	The data read out from video RAM at row RPosRow and column RPosCol

	RMyPosRow
	8
	O
	Row number of the data being read

	RMyPosCol
	8
	O
	Column number of the date being read

	WMyPosEnable
	1
	O
	Write data to video RAM

	WMyPosData
	2
	O
	The data being written to video RAM

	WMyPosRow
	8
	O
	Row number of the data being written

	RVsPosValid
	1
	I
	Indicate the RPosData is valid. You could read RPosData immediately.

	RVsPosData
	2
	I
	The data read out from video RAM at row RPosRow and column RPosCol

	RVsPosRow
	8
	O
	Row number of the data being read

	RVsPosCol
	8
	O
	Column number of the date being read

	WVsPosEnable
	1
	O
	Write data to video RAM

	WVsPosData
	2
	O
	The data being written to video RAM

	WVsPosRow
	8
	O
	Row number of the data being written

	WVsPosCol
	8
	O
	Column number of the data being written

Table 5- Sample Port Specification for GameEngine.v

4.4 VideoRAM.v

This module stores the board information and any other information you want to display on the screen. It also generates the YUV information upon request from video encoder. Again, this is just one reference design. Keep in mind that you do not have to follow this implementation and/or port specifications; if you do not understand these ports descriptions, you can implement a set of ports that make more sense to you.

	Signal
	Width
	Dir
	Description

	Clock
	1
	I
	System clock

	Reset
	1
	I
	System reset

	SoftReset
	1
	I
	Soft reset

	InitDone
	1
	O
	Indicate that the video RAM initialization is done

	RMyPosValid
	1
	O
	Indicate the RMyPosData is valid. You could read RMyPosData immediately.

	RMyPosData
	8
	O
	The data stored in video RAM at row RMyPosRow and column RMyPosCol

	RMyPosRow
	4
	
I
	Row number of the data being read from local player’s board

	RMyPosCol
	4
	I
	Column number of the data being read from local player’s board

	RVsPosValid
	1
	O
	Indicate the RsPosData is valid. You could read RVsPosData immediately.

	RVsPosData
	8
	O
	The data stored in video RAM at row RVsPosRow and column RVsPosCol

	RVsPosRow
	4
	
I
	Row number of the data being read from network player’s board

	RVsPosCol
	4
	I
	Column number of the data being read from network player’s board

	WMyPosEnable
	1
	I
	Write local player data to video RAM

	WMyPosData
	8
	I
	The local player data being written to video RAM

	WMyPosRow
	4
	I
	Row number of the local player data being written

	WMyPosCol
	4
	I
	Column number of the local player data being written

	WVsPosEnable
	1
	I
	Write network player data to video RAM

	WVsPosData
	8
	I
	The network player data being written to video RAM

	WVsPosRow
	4
	I
	Row number of the network player data being written

	WVsPosCol
	4
	I
	Column number of the network player data being written

	WCharEnable
	1
	I
	Store WCharCode at row WCharRow and column WCharCol on the screen

	WCharCode
	8
	I
	The character’s ASCII code

	WCharRow
	8
	I
	Row number of the character being written

	WCharCol
	8
	I
	Column number of the character being written

	OutRequest
	1
	I
	Video data read request from video encoder

	OutRequestLine
	9
	I
	The line number

	OutRequestPair
	9
	I
	The pair number

	Dout
	32
	O
	The video YUV data

Table 2: Sample Port Specification for VideoRAM.v

	5.0 Checkpoint 4 Check-off

	Assigned:
	Week of 11/7

	Due:
	Week of 11/21 for early check-off or 11/28 for regular check-off

	Man Hours Spent
	Total Points
	TA Initial
	Date
	Time

	
	 / 100
	
	 / / 06
	

	NAME
	
	SID
	
	SECTION
	

	
	
	
	
	
	

	I Final Project Demo
[100%]

II Any additional features for extra credits
[%]

[%]

[%]

[%]

[%]

11/03/2006 Kenny Duong Checkpoint Created

 David Chen

 Mike Southworth

Video Encoder

N64

Video RAM

Game Engine

Transceiver

UCB
1
2005

