University of California at Berkeley

College of Engineering

Department of Electrical Engineering and Computer Science

EECS 150

R. H. Katz

Fall 2005

Problem Set # 6

(Assigned 12 October, Due 21 October)
SOLUTIONS
(Note: there may be many different solutions to the questions below)
1. Consider the design of a simple digital alarm clock. The clock displays the current time in 24-hour HH:MM notation (HH goes from 00 to 23 and MM from 00 to 59). There are several control inputs for setting the current time and the alarm time. The TIME SET HH button allows you to rapidly advance through the hours 0 through 23. The time advances one hour for each time the button is pressed. The TIME SET MM button does the same thing for the minutes 00 through 59. In addition, the clock has a toggle input that indicates CLOCK in one position and ALARM in the other. This refers to which time is being set by the TIME SET buttons: either the current time (CLOCK) or the alarm time (ALARM). If the ALARM button is set, the clock displays the last set alarm time. Finally, there is another input controlled by a push button: ALARM ON when pushed in and ALARM OFF when popped out. Your job is to define the state diagram for the clock controller. It should support normal clock display (when CLOCK is set), alarm display (when ALARM is set), set current time (CLOCK + TIME SET buttons), set alarm time (ALARM + TIME SET buttons), and of course, the alarm should sound when the current time equals alarm time.

(a) Identify your inputs, outputs, and name and describe your states. State any assumptions you are making.
INPUTS:

	TIME SET HH
	Increment hour for clock/alarm

	TIME SET MM
	Increment minute for clock/alarm

	TOGGLE
	Toggles between clock and alarm set

OUTPUTS:

	TMI
	Increases clock minute by 1

	THI
	Increases clock hour by 1

	AMI
	Increases alarm minute by 1

	AHI
	Increases alarm hour by 1

	DISP
	Indicates clock or alarm display

STATES:

	TIME MM
	Increase minute counter of time

	TIME HH
	Increase hour counter of time

	TIME IDLE
	Display time without increase minute or hour

	ALARM MM
	Increase minute counter of alarm

	ALARM HH
	Increase hour counter of alarm

	ALARM IDLE
	Display alarm without increasing minute or hour

Note: for the sake of simplicity, ALARM is passed through the controller without being manipulated, and the alarm sounding is controlled outside of the controller. Therefore, the controller does not need to know the specifics about what the current time and alarm time is. The clock controller only needs to send signals to the datapath to manipulate the clock and alarm times.
ASSUMPTIONS: You can move from one state to any of the other states. For example, if you are pressing the Minute Advance button and you toggle the time set off, the alarm will start incrementing the alarm minute.
(b) Draw a symbolic state diagram for your design, labeling all state transitions.
SOLUTION 1:

ASSUMPTIONS: You can move from one state to any of the other states. For example, if you are pressing the Minute Advance button and you toggle the time set off, the alarm will start incrementing the alarm minute.

[image: image1.wmf]TIME MM

{TMI,~THI,

~AMI,~AHI,DISP}

TIME HH

{~TMI,THI,

~AMI,~AHI,DISP}

TIME IDLE

{~TMI,~THI,

~AMI,~AHI,DISP}

ALARM HH

{~TMI,~THI,

~AMI,AHI,~DISP}

ALARM MM

{~TMI,~THI,

AMI,~AHI,~DISP}

ALARM IDLE

{~TMI,~THI,

~AMI,~AHI,~DISP}

TIME HH &

~TIME MM &

TOGGLE

~TIME HH &

~TIME MM &

TOGGLE

~TIME HH &

TIME MM &

TOGGLE

TIME HH &

~TIME MM &

TOGGLE

~TIME HH &

TIME MM &

TOGGLE

~TIME HH &

~TIME MM &

TOGGLE

~TIME HH &

TIME MM &

TOGGLE

~TIME HH &

~TIME MM &

~TOGGLE

~TIME HH &

TIME MM &

~TOGGLE

~TIME HH &

~TIME MM &

~TOGGLE

TIME HH &

~TIME MM &

~TOGGLE

~TIME HH &

TIME MM &

~TOGGLE

~TIME HH &

~TIME MM &

TOGGLE

TIME HH &

~TIME MM &

~TOGGLE

TIME HH &

~TIME MM &

TOGGLE

~TIME HH &

~TIME MM &

~TOGGLE

~TIME HH &

TIME MM &

~TOGGLE

~TIME HH &

~TIME MM &

TOGGLE

~TIME HH &

TIME MM &

~TOGGLE

~TIME HH &

TIME MM &

TOGGLE

~TIME HH &

~TIME MM &

TOGGLE

TIME HH &

~TIME MM &

~TOGGLE

~TIME HH &

TIME MM &

TOGGLE

Note: The else arcs are omitted for clarity.

SOLUTION 2 (This is probably more realistic):

ASSUMPTIONS: State machine is either in “alarm” mode or “clock” mode, and it can only go from “alarm” mode to “time” mode from the ALARM_IDLE and TIME_IDLE states. That is, the state machine waits till the user finishes pressing the TIME_MM or TIME_HH buttons before changing states.
[image: image2.wmf]TIME MM

{TMI,~THI,

~AMI,~AHI,DISP}

TIME HH

{~TMI,THI,

~AMI,~AHI,DISP}

TIME IDLE

{~TMI,~THI,

~AMI,~AHI,DISP}

ALARM HH

{~TMI,~THI,

~AMI,AHI,~DISP}

ALARM MM

{~TMI,~THI,

AMI,~AHI,~DISP}

ALARM IDLE

{~TMI,~THI,

~AMI,~AHI,~DISP}

~TIME HH &

~TIME MM &

TOGGLE

TIME HH &

~TIME MM &

TOGGLE

~TIME HH &

TIME MM &

TOGGLE

~TIME HH &

~TIME MM &

TOGGLE

~TIME HH &

~TIME MM &

TOGGLE

TIME HH &

~TIME MM &

~TOGGLE

~TIME HH &

~TIME MM &

TOGGLE

~TIME HH &

~TIME MM &

~TOGGLE

~TIME HH &

TIME MM &

~TOGGLE

~TIME HH &

~TIME MM &

TOGGLE

(c) Write sketch Verilog for describing this state machine, assuming a MOORE Machine implementation.

Input clk, rst, timehh, timemm, toggle;

Output TMI, THI, AMI, AHI, DISP;

Reg [1:0] PS, NS;
Always @ (*) begin

Case (PS)

TIME_IDLE:
{TMI,THI,AMI,AHI,DISP} <= {0,0,0,0,0};

TIME_HH:
{TMI,THI,AMI,AHI,DISP} <= {0,1,0,0,0};

TIME_MM:
{TMI,THI,AMI,AHI,DISP} <= {0,0,1,0,0};

ALARM_IDLE:
{TMI,THI,AMI,AHI,DISP} <= {0,0,0,0,1};

ALARM_HH:
{TMI,THI,AMI,AHI,DISP} <= {0,1,0,0,0};

ALARM_MM:
{TMI,THI,AMI,AHI,DISP} <= {1,0,0,0,0};

end
Always @ (*) begin

Case (PS)

TIME_IDLE:

if(~timehh & ~timemm & toggle) NS <= TIME_IDLE;

else if (timehh & ~timemm & toggle) NS <= TIME_HH;

else if (~timehh & timemm & toggle) NS <= TIME_MM;

else if (~timehh & ~timemm & ~toggle) NS <= ALARM_IDLE;

else if (timehh & ~timemm & ~toggle) NS <= ALARM_HH;

else if (~timehh & timemm & ~toggle) NS <= ALARM_MM;

else NS <= PS;

TIME_HH:

if(~timehh & ~timemm & toggle) NS <= TIME_IDLE;

else if (timehh & ~timemm & toggle) NS <= TIME_HH;

else if (~timehh & timemm & toggle) NS <= TIME_MM;

else if (~timehh & ~timemm & ~toggle) NS <= ALARM_IDLE;

else if (timehh & ~timemm & ~toggle) NS <= ALARM_HH;

else if (~timehh & timemm & ~toggle) NS <= ALARM_MM;

else NS <= PS;

TIME_MM:

if(~timehh & ~timemm & toggle) NS <= TIME_IDLE;

else if (timehh & ~timemm & toggle) NS <= TIME_HH;

else if (~timehh & timemm & toggle) NS <= TIME_MM;

else if (~timehh & ~timemm & ~toggle) NS <= ALARM_IDLE;

else if (timehh & ~timemm & ~toggle) NS <= ALARM_HH;

else if (~timehh & timemm & ~toggle) NS <= ALARM_MM;

else NS <= PS;

ALARM_IDLE:

if(~timehh & ~timemm & toggle) NS <= TIME_IDLE;

else if (timehh & ~timemm & toggle) NS <= TIME_HH;

else if (~timehh & timemm & toggle) NS <= TIME_MM;

else if (~timehh & ~timemm & ~toggle) NS <= ALARM_IDLE;

else if (timehh & ~timemm & ~toggle) NS <= ALARM_HH;

else if (~timehh & timemm & ~toggle) NS <= ALARM_MM;

else NS <= PS;

ALARM_HH:

if(~timehh & ~timemm & toggle) NS <= TIME_IDLE;

else if (timehh & ~timemm & toggle) NS <= TIME_HH;

else if (~timehh & timemm & toggle) NS <= TIME_MM;

else if (~timehh & ~timemm & ~toggle) NS <= ALARM_IDLE;

else if (timehh & ~timemm & ~toggle) NS <= ALARM_HH;

else if (~timehh & timemm & ~toggle) NS <= ALARM_MM;

else NS <= PS;

ALARM_MM:

if(~timehh & ~timemm & toggle) NS <= TIME_IDLE;

else if (timehh & ~timemm & toggle) NS <= TIME_HH;

else if (~timehh & timemm & toggle) NS <= TIME_MM;

else if (~timehh & ~timemm & ~toggle) NS <= ALARM_IDLE;

else if (timehh & ~timemm & ~toggle) NS <= ALARM_HH;

else if (~timehh & timemm & ~toggle) NS <= ALARM_MM;

else NS <= PS;
end

Always @ (posedge clk)

NS <= PS

2. Design an in-car “trip computer” to the following specification. Under driver control, the trip computer displays miles traveled since last reset, average speed (miles traveled/elapsed time since last reset), and miles per gallon (miles traveled/gallons consumed since last reset). The inputs to the state machine are: (1) signal to increment miles traveled (once per mile traveled), (2) increment time (once per second), and (3) the integer number of gallons of gas consumed since the last reset. The user interface has two buttons: a reset and a display push button. By default, miles traveled since last reset is displayed. If display is pressed, the average speed in miles per hour is shown. If pressed again, the miles per gallon is shown. Pressed one more time, the display returns to miles traveled since last reset, and the display sequence can be repeated. You may assume that display is a synchronized, debounced signal that is asserted for exactly one clock period when pressed.

(a) Draw a simple block diagram that shows the controller’s inputs and outputs. Document your assumptions.
[image: image3.wmf]controller

reset

display

[1:0] mode

clk

Assumptions:
- increment time, increment mile, and increment gallons are passed directly to the arithmetic operators (There is no need for these signals to be manipulated in the controller)
- mode is a 2-bit wire that drives a 4:1 mux

	Mux value
	Mode

	00
	Miles since last reset

	01
	Miles per hour

	10
	Miles per gallon

	11
	Undefined

(b) Draw a simple datapath block diagram for the trip computer, including any multiplexers, counters, registers, arithmetic functional units (e.g., adders, subtractors, multipliers, dividers), and display decoders and drivers you may need for its implementation. Don’t worry about how wide these functional units are – simply assume that they are designed to be wide enough for this application. Show how they are interconnected and indicate the control signals that you need to control this datapath.

[image: image4.wmf]CONTROLLER

+

FF

LD

RST

CLK

1

+

FF

LD

RST

CLK

1

+

FF

LD

RST

CLK

1

miles

time

gallons

increment miles

increment time

increment gallons

reset

clock

4:1 Multiplexor

DIVIDER

DIVISOR

DIVIDEND

DIVIDER

DIVISOR

DIVIDEND

[00]

[01]

[10]

RST

DISP

CLK

display

output

(c) Draw a complete MEALY MACHINE State Diagram for your controller.

[image: image5.wmf]mile

speed

mpg

disp & !reset / 01

disp & !reset / 10

disp | reset / 00

else/ 00

else/ 01

else/ 10

reset / 00

(d) Write sketch Verilog for describing the state machine.

Input clk, rst, disp;

Output [1:0] mode;

Reg [1:0] PS, NS;

Always @ (*) begin
Case (PS)

2’b00:

if(disp & ~reset) begin

mode <= 2’b01;

NS <= 2’b01;

End

Else begin

Mode <= 2’b00;

NS <= 2’b00;

end

2’b01:

if(disp & ~reset) begin

mode <= 2’b10;

NS <= 2’b10;

End

Else if(reset) begin

mode <= 2’b00;

NS <= 2’b00;

End

Else begin

Mode <= 2’b01;

NS <= 2’b01;

end

2’b10:

if(disp | reset) begin

mode <= 2’b00;

NS <= 2’b00;

End

Else begin

Mode <= 2’b10;

NS <= 2’b10;

end

Always @ (posedge clk)
NS <= PS

