LM4862 Boomer® Audio Power Amplifier Series

675 mW Audio Power Amplifier with Shutdown Mode

General Description

The LM4862 is a bridge-connected audio power amplifier capable of delivering typically 675 mW of continuous average power to an 8Ω load with 1% (THD) from a 5V power supply. Boomer audio power amplifiers were designed specifically to provide high quality output power with a minimal amount of external components. Since the LM4862 does not require output coupling capacitors, bootstrap capacitors, or snubber networks, it is optimally suited for low-power portable systems.

The LM4862 features an externally controlled, low-power consumption shutdown mode, as well as an internal thermal shutdown protection mechanism.

The unity-gain stable LM4862 can be configured by external gain-setting resistors.

Key Specifications

- THD at 500 mW continuous average output power at 1 kHz into 8Ω: 1% (max)
- Output power at 10% THD+N at 1 kHz into 8Ω: 825 mW (typ)
- Shutdown Current: 0.7 µA (typ)

Features

- No output coupling capacitors, bootstrap capacitors or snubber circuits are necessary
- Small Outline or DIP packaging
- Unity-gain stable
- External gain configuration capability
- Pin compatible with LM4861

Applications

- Portable Computers
- Cellular Phones
- Toys and Games

Typical Application Connection Diagram

FIGURE 1. Typical Audio Amplifier Application Circuit

Boomer® is a registered trademark of National Semiconductor Corporation.

© 1999 National Semiconductor Corporation

DS012342-1

*Refer to the Application Information section for information concerning proper selection of the input coupling capacitor.
Absolute Maximum Ratings (Note 2)
If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/ Distributors for availability and specifications.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Conditions</th>
<th>Limits (Units)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Supply Voltage</td>
<td>6.0V</td>
<td></td>
</tr>
<tr>
<td>Storage Temperature</td>
<td>−65˚C to +150˚C</td>
<td></td>
</tr>
<tr>
<td>Input Voltage</td>
<td>−0.3V to V_{DD} + 0.3V</td>
<td></td>
</tr>
<tr>
<td>Power Dissipation (Note 3)</td>
<td>Internally limited</td>
<td></td>
</tr>
<tr>
<td>ESD Susceptibility (Note 4)</td>
<td>3500V</td>
<td></td>
</tr>
<tr>
<td>ESD Susceptibility (Note 5)</td>
<td>250V</td>
<td></td>
</tr>
<tr>
<td>Junction Temperature</td>
<td>150˚C</td>
<td></td>
</tr>
<tr>
<td>Soldering Information</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Small Outline Package</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vapor Phase (60 sec.)</td>
<td>215˚C</td>
<td></td>
</tr>
</tbody>
</table>

Operating Ratings

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Conditions</th>
<th>Limits (Units)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Temperature Range</td>
<td>T_{MIN} ≤ T_A ≤ T_{MAX}</td>
<td>−40˚C ≤ T_A ≤ 85˚C</td>
</tr>
<tr>
<td>Supply Voltage</td>
<td></td>
<td>2.7V ≤ V_{DD} ≤ 5.5V</td>
</tr>
</tbody>
</table>

Electrical Characteristics (Note 1) (Note 2)
The following specifications apply for $V_{DD} = 5$V unless otherwise specified. Limits apply for $T_A = 25$˚C.

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Conditions</th>
<th>LM4862 Limits (Units)</th>
</tr>
</thead>
<tbody>
<tr>
<td>V_{DD}</td>
<td>Supply Voltage</td>
<td>$V_{IN} = 0, V, I_O = 0, A$ (Note 8)</td>
<td>3.6 5.5 V (min)</td>
</tr>
<tr>
<td>I_{DD}</td>
<td>Quiescent Power Supply Current</td>
<td>$V_{IN} = 0, V, I_O = 0, A$ (Note 8)</td>
<td>6.0 mA (max)</td>
</tr>
<tr>
<td>I_{SD}</td>
<td>Shutdown Current</td>
<td>$V_{IN} = V_{DD}$</td>
<td>0.7 5 µA (max)</td>
</tr>
<tr>
<td>V_{OS}</td>
<td>Output Offset Voltage</td>
<td>$V_{IN} = 0, V$</td>
<td>5 50 mV (max)</td>
</tr>
<tr>
<td>P_{O}</td>
<td>Output Power</td>
<td>$THD = 1%$ (max); $f = 1, kHz$; $R_L = 8, \Omega$</td>
<td>675 825 mW (min)</td>
</tr>
<tr>
<td>$THD + N$</td>
<td>Total Harmonic Distortion + Noise</td>
<td>$P_{O} = 500, mW$ rms; $R_L = 8, \Omega$</td>
<td>0.55 %</td>
</tr>
<tr>
<td>$PSRR$</td>
<td>Power Supply Rejection Ratio</td>
<td>$V_{DD} = 4.9, V$ to 5.1V</td>
<td>50 dB</td>
</tr>
</tbody>
</table>

Note 1: All voltages are measured with respect to the ground pin, unless otherwise specified.

Note 2: Absolute Maximum Ratings indicate limits beyond which damage to the device may occur. Operating Ratings indicate conditions for which the device is functional, but do not guarantee specific performance limits. Electrical Characteristics state DC and AC electrical specifications under particular test conditions which guarantee specific performance limits. This assumes that the device is within the Operating Ratings. Specifications are not guaranteed for parameters where no limit is given, however, the typical value is a good indication of device performance.

Note 3: The maximum power dissipation must be derated at elevated temperatures and is dictated by T_{JMAX}, θ_J, and the ambient temperature T_A. The maximum allowable power dissipation is $P_{DMAX} = (T_{JMAX} - T_A)/\theta_J$. For the LM4862, $T_{JMAX} = 150$˚C, $\theta_J = 35$˚C/W, and the ambient temperature T_A. The maximum junction-to-ambient thermal resistance, when board mounted, is 170˚C/W for package number M08A and is 107˚C/W for package number N08E.

Note 4: Human body model, 100 pF discharged through a 1.5 kΩ resistor.

Note 5: Machine Model, 200 pF–240 pF discharged through all pins.

Note 6: Typical values are measured at 25˚C and represent the parametric norm.

Note 7: Limits are guaranteed to National's AOQL (Average Outgoing Quality Level).

Note 8: The quiescent power supply current depends on the offset voltage when a practical load is connected to the amplifier.
Automatic Switching Circuit

External Components Description (Figure 1)

<table>
<thead>
<tr>
<th>Components</th>
<th>Functional Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. R_i</td>
<td>Inverting input resistance which sets the closed-loop gain in conjunction with R_f. This resistor also forms a high pass filter with C_i at $f_c = 1/(2\pi R_i C_i)$.</td>
</tr>
<tr>
<td>2. C_i</td>
<td>Input coupling capacitor which blocks the DC voltage at the amplifier’s input terminals. Also creates a highpass filter with R_i at $f_c = 1/(2\pi R_i C_i)$. Refer to the section, Proper Selection of External Components, for an explanation of how to determine the value of C_i.</td>
</tr>
<tr>
<td>3. R_f</td>
<td>Feedback resistance which sets the closed-loop gain in conjunction with R_i.</td>
</tr>
<tr>
<td>4. C_s</td>
<td>Supply bypass capacitor which provides power supply filtering. Refer to the Power Supply Bypassing section for proper placement and selection of the supply bypass capacitor.</td>
</tr>
<tr>
<td>5. C_{bs}</td>
<td>Bypass pin capacitor which provides half-supply filtering. Refer to the Proper Selection of External Components section for proper placement and selection of the half-supply bypass capacitor.</td>
</tr>
</tbody>
</table>
Application Information

BRIDGE CONFIGURATION EXPLANATION

As shown in Figure 1, the LM4862 has two operational amplifiers internally, allowing for a few different amplifier configurations. The first amplifier’s gain is externally configurable, while the second amplifier is internally fixed in a unity-gain, inverting configuration. The closed-loop gain of the first amplifier is set by selecting the ratio of Rf to Ri, while the second amplifier’s gain is fixed by the two internal 10 kΩ resistors. Figure 1 shows that the output of amplifier one serves as the input to amplifier two which results in both amplifiers producing signals identical in magnitude, but out of phase 180°. Consequently, the differential gain for the IC is

\[A_{\text{diff}} = 2 \times \frac{R_f}{R_i} \]

By driving the load differentially through outputs Vo1 and Vo2, an amplifier configuration commonly referred to as “bridged mode” is established. Bridged mode operation is different from the classical single-ended amplifier configuration where one side of the load is connected to ground. A bridge amplifier design has a few distinct advantages over the single-ended configuration, as it provides differential drive to the load, thus doubling output swing for a specified supply voltage. Consequently, four times the output power is possible as compared to a single-ended amplifier under the same conditions. This increase in attainable output power assumes that the amplifier is not current limited or clipped. In order to choose an amplifier’s closed-loop gain without causing excessive clipping which will damage high frequency transducers used in loudspeaker systems, please refer to the Audio Power Amplifier Design section.

A bridge configuration, such as the one used in LM4862, also creates a second advantage over single-ended amplifiers. Since the differential outputs, Vo1 and Vo2, are biased at half-supply, no net DC voltage exists across the load. This eliminates the need for an output coupling capacitor which is required in a single supply, single-ended amplifier configuration. Without an output coupling capacitor, the half-supply bias across the load would result in both increased internal IC power dissipation and also permanent loudspeaker damage.

POWER DISSIPATION

Power dissipation is a major concern when designing a successful amplifier, whether the amplifier is bridged or single-ended. A direct consequence of the increased power delivered to the load by a bridge amplifier is an increase in internal power dissipation. Equation 1 states the maximum power dissipation point for a bridge amplifier operating at a given supply voltage and driving a specified output load.

\[P_{\text{DMAX}} = 4 \times \frac{V_{\text{DD}}^2}{(2\pi R_L)} \]

(1)

Since the LM4862 has two operational amplifiers in one package, the maximum internal power dissipation is 4 times that of a single-ended amplifier. Even with this substantial increase in power dissipation, the LM4862 does not require heatsinking. From Equation 1, assuming a 5V power supply and an 8Ω load, the maximum power dissipation point is 625 mW. The maximum power dissipation point obtained from Equation 1 must not be greater than the power dissipation that results from Equation 2:

\[P_{\text{DMAX}} = \frac{(T_{\text{MAX}} - T_A)}{\theta_{JA}} \]

(2)

For package M08A, \(\theta_{JA} = 170˚C/W \) and for package N08E, \(\theta_{JA} = 107˚C/W \). \(T_{\text{MAX}} = 150˚C \) for the LM4862. Depending on the ambient temperature, \(T_A \), of the system surroundings, Equation 2 can be used to find the maximum internal power dissipation supported by the IC packaging. If the result of Equation 1 is greater than that of equation 2, then either the supply voltage must be decreased, the load impedance increased, or the ambient temperature reduced. For the typical application of a 5V power supply, with an 8Ω load, the maximum ambient temperature possible without violating the maximum junction temperature is approximately 44˚C provided that device operation is around the maximum power dissipation point. Power dissipation is a function of output power and thus, if typical operation is not around the maximum power dissipation point, the ambient temperature can be increased. Refer to the Typical Performance Characteristics curves for power dissipation information for lower output powers.

POWER SUPPLY BYPASSING

As with any power amplifier, proper supply bypassing is critical for low noise performance and high power supply rejection. The capacitor location on both the bypass and power supply pins should be as close to the device as possible. As displayed in the Typical Performance Characteristics section, the effect of a larger half supply bypass capacitor is improved PSSR due to increased half-supply stability. Typical applications employ a 5V regulator with 10 µF and a 0.1 µF bypass capacitors which aid in supply stability, but do not eliminate the need for bypassing the supply nodes of the LM4862. The selection of bypass capacitors, especially \(C_{\text{SP}} \), is thus dependent upon desired PSSR requirements, click and pop performance as explained in the section, Proper Selection of External Components, system cost, and size constraints.

SHUTDOWN FUNCTION

In order to reduce power consumption while not in use, the LM4862 contains a shutdown pin to externally turn off the amplifier’s bias circuitry. The shutdown feature turns the amplifier off when a logic high is placed on the shutdown pin. The trigger point between a logic low and logic high level is typically half supply. It is best to switch between ground and supply to provide maximum device performance. By switching the shutdown pin to \(V_{\text{DD}} \), the LM4862 supply current draw will be minimized in idle mode. While the device will be disabled with shutdown pin voltages less than \(V_{\text{DD}} \), the idle current may be greater than the typical value of 0.7 µA. In either case, the shutdown pin should be tied to a definite voltage because leaving the pin floating may result in an unwanted shutdown condition. In many applications, a microcontroller or microprocessor output is used to control the shutdown circuitry which provides a quick, smooth transition into shutdown. Another solution is to use a single-pole, single-throw switch that when closed, is connected to ground and enables the amplifier. If the switch is open, then a soft pull-up resistor of 47 kΩ will disable the LM4862. There are no soft pull-down resistors inside the LM4862, so a definite shutdown pin voltage must be applied externally, or the internal logic gate will be left floating which could disable the amplifier unexpectedly.

AUTOMATIC SWITCHING CIRCUIT

As shown in Figure 2, the LM4862 and the LM4880 can be set up to automatically switch on and off depending on whether headphones are plugged in. The LM4880 is used to drive a stereo single ended load, while the LM4862 drives a bridged internal speaker.
The Automatic Switching Circuit is based upon a single control pin common in many headphone jacks which forms a normally closed switch with one of the output pins. The output of this circuit (the voltage on pin 5 of the LM4880) has two states based on the position of the switch. When the switch inside the headphone jack is open, the LM4880 is enabled and the LM4862 is disabled since the NMOS inverter is on. If a headphone jack is not present, it is assumed that the internal speakers should be on and the external speakers should be off. Thus the voltage on the LM4862 shutdown pin is low and the voltage on the LM4880 shutdown pin is high.

The operation of this circuit is rather simple. With the switch closed, \(R_P \) and \(R_O \) form a resistor divider which produces a gate voltage of less than 50 mV. The gate voltage keeps the NMOS inverter off and \(RSD \) pulls the shutdown pin of the LM4880 to the supply voltage. This shuts down the LM4880 and places the LM4862 in its normal mode of operation.

When the switch is open, the opposite condition is produced. Resistor \(R_P \) pulls the gate of the NMOS high which turns on the inverter and produces a logic low signal on the shutdown pin of the LM4880. This state enables the LM4880 and places the LM4862 in shutdown mode.

Only one channel of this circuit is shown in Figure 2 to keep the drawing simple but a typical application would be a LM4880 driving a stereo headphone jack and two LM4862’s driving a pair of internal speakers. If a single internal speaker is required, one LM4862 can be used as a summer to mix the left and right inputs into a mono channel.

PROPER SELECTION OF EXTERNAL COMPONENTS

Proper selection of external components in applications using integrated power amplifiers is critical to optimize device and system performance. While the LM4862 is tolerant of external component combinations, consideration to component values must be used to maximize overall system quality.

The LM4862 is unity-gain stable which gives a designer maximum system flexibility. The LM4862 should be used in low gain configurations to minimize THD+N values, and maximize the signal to noise ratio. Low gain configurations require large input signals to obtain a given output power. Input signals equal to or greater than 1 Vrms are available from sources such as audio codecs. Please refer to the section, Audio Power Amplifier Design, for a more complete explanation of proper gain selection.

Besides gain, one of the major considerations is the closed-loop bandwidth of the amplifier. To a large extent, the bandwidth is dictated by the choice of external components shown in Figure 1. The input coupling capacitor, \(C_i \), forms a first order high pass filter which limits low frequency response. This value should be chosen based on needed frequency response for a few distinct reasons.

Selection of Input Capacitor Size

Large input capacitors are both expensive and space hungry for portable designs. Clearly, a certain sized capacitor is needed to couple in low frequencies without severe attenuation. But in many cases the speakers used in portable systems, whether internal or external, have little ability to reproduce signals below 100–150 Hz. Thus using a large input capacitor may not increase system performance.

In addition to system cost and size, click and pop performance is effected by the size of the input coupling capacitor, \(C_i \). A larger input coupling capacitor requires more charge to reach its quiescent DC voltage (nominally \(1/2 \) \(V_{DD} \)). This charge comes from the output via the feedback and is apt to create pops upon device enable. Thus, by minimizing the capacitor size based on necessary low frequency response, turn-on pops can be minimized.

Besides minimizing the input capacitor size, careful consideration should be paid to the bypass capacitor value. Bypass capacitor, \(C_B \), is the most critical component to minimize turn-on pops since it determines how fast the LM4862 turns on. The slower the LM4862’s outputs ramp to their quiescent DC voltage (nominally \(1/2 \) \(V_{DD} \)), the smaller the turn-on pop. Choosing \(C_B \) equal to 1.0 \(\mu F \) along with a small value of \(C_i \) (in the range of 0.1 \(\mu F \) to 0.39 \(\mu F \)), should produce a virtually clickless and popless shutdown function. While the device will function properly, (no oscillations or motorboating), with \(C_B \) equal to 0.1 \(\mu F \), the device will be much more susceptible to turn-on clicks and pops. Thus, a value of \(C_B \) equal to 1.0 \(\mu F \) or larger is recommended in all but the most cost sensitive designs.
Application Information (Continued)

AUDIO POWER AMPLIFIER DESIGN
Design a 500 mW/8Ω Audio Amplifier

Given:
- Power Output: 500 mW
- Load Impedance: 8Ω
- Input Level: 1 Vrms
- Input Impedance: 20 kΩ
- Bandwidth: 100 Hz–20 kHz ± 0.25 dB

A designer must first determine the minimum supply rail to obtain the specified output power. By extrapolating from the Output Power vs Supply Voltage graphs in the Typical Performance Characteristics section, the supply rail can be easily found. A second way to determine the minimum supply rail is to calculate the required Vpeak using equation 3 and add the dropout voltage. Using this method, the minimum supply voltage would be \(V_{\text{peak}} + 2V_{\text{OD}} \), where \(V_{\text{OD}} \) is extrapolated from the Dropout Voltage vs Supply Voltage curve in the Typical Performance Characteristics section.

\[
V_{\text{peak}} = \sqrt{2P_{\text{out}}/R_L}
\]
\[
(3)
\]

Using the Output Power vs Supply Voltage graph for an 8Ω load, the minimum supply rail is 4.3V. But since 5V is a standard supply voltage in most applications, it is chosen for the supply rail. Extra supply voltage creates headroom that allows the LM4862 to reproduce peaks in excess of 500 mW without clipping the signal. At this time, the designer must make sure that the power supply choice along with the output impedance does not violate the conditions explained in the Power Dissipation section.

Once the power dissipation equations have been addressed, the required differential gain can be determined from Equation 4.

\[
A_{\text{VD}} \geq \frac{\sqrt{P_{\text{out}}R_L}}{V_{\text{OD}}} = \frac{V_{\text{rms}}}{V_{\text{in rms}}}
\]
\[
(4)
\]

\[
R_i/R_o = A_{\text{VD}}/2:
\]
\[
(5)
\]

From equation 4, the minimum \(A_{\text{VD}} \) is 2; use \(A_{\text{VD}} = 2 \).

Since the desired input impedance was 20 kΩ, and with a \(A_{\text{VD}} \) of 2, a ratio of 1:1 of \(R_i \) to \(R_o \) results in an allocation of \(R_i = R_o = 20 \) kΩ. The final design step is to address the bandwidth requirements which must be stated as a pair of −3 dB frequency points. Five times away from a −3 dB point is 0.17 dB down from passband response which is better than the required ±0.25 dB specified. This fact results in a low and high frequency pole of 20 Hz and 100 kHz respectively.

As stated in the External Components section, \(R_i \) in conjunction with \(C_i \) create a highpass filter.

\[
C_i \geq \frac{1}{2\pi f_p R_i} = 0.397 \mu F; \text{ use } 0.39 \mu F.
\]

The high frequency pole is determined by the product of the desired high frequency pole, \(f_p \), and the differential gain, \(A_{\text{VD}} \). With an \(A_{\text{VD}} = 2 \) and \(f_p = 100 \) kHz, the resulting GBWP ≈ 100 kHz which is much smaller than the LM4862 GBWP of 12.5 MHz. This figure displays that if a designer has a need to design an amplifier with a higher differential gain, the LM4862 can still be used without running into bandwidth problems.
Physical Dimensions inches (millimeters) unless otherwise noted

8-Lead (0.150" Wide) Molded Small Outline Package, JEDEC
Order Number LM4862M
NS Package Number M08A

8-Lead (0.300" Wide) Molded Dual-In-Line Package
Order Number LM4862N
NS Package Number N08E
LIFE SUPPORT POLICY

NATIONAL'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT AND GENERAL COUNSEL OF NATIONAL SEMICONDUCTOR CORPORATION. As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.

2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

National does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and National reserves the right at any time without notice to change said circuitry and specifications.