
University of California at Berkeley

College of Engineering

Department of Electrical Engineering and Computer Sciences

CS 150 J. Wawrzynek and N. Weaver
Fall 1999 modi�ed by R. Fearing and M. Bene�s and P. Kim

Lab 5
Shift Registers and Counters

1 Objective

Counters and shift registers are commonly-used �nite state machines. In this lab, you will build some
and use the Xilinx board and see how they can be used for error correction.

2 Prelab

Read through this, enter the circuit described in Section 5, and answer the checko� sheet questions.

3 Linear Feedback Shift Registers

clk

Q1Q2Q3Q4
Q D

F4

Q D

F3

Q D

F2

Q D

F1

Figure 1: A four-bit linear feedback shift register

Linear feedback shift registers (later called LFSR), such as the one in Figure 1, are n-bit counters
exhibiting pseudorandom behavior using little circuitry. They have many applications, including com-
puter graphics and pseudorandom number generation. In this lab, you will use an LFSR to perform
error checking - application used widely in digital communications.

XOR 0 0 0 0 0

XOR 0 0 0 0 0

XOR 0 0 0 0 0

XOR 0 0 0 0 0

XOR 0 0 0 0 0

XOR 0 01 1 1

XOR 0 01 1 1

0 0 0 1

Q4 Q3 Q2 Q1

0 0 0 1

0 0 1

0

0

0 1 0 0

1

0

0

0

0

0

0 0 0 0

0 0 0 1 1

0 0 1 1 0

0

0

0

1 1 0 0 0

0 1 0 1 1

0 1 0 0
1 0 0 0
0 0 1 1
0 1 1 0
1 1 0 0
1 0 1 1
0 1 0 1
1 0 1 0
0 1 1 1
1 1 1 0
1 1 1 1
1 1 0 1
1 0 0 1
0 0 0 1

0 0 1 0

Figure 2: 4-bit LFSR sequence

Consider the operation of the LFSR shown in Fig-
ure 1. When the FFs are all zero, it does nothing. Ev-
ery Q output is zero, the feedback path is zero, and
the output of the XOR is zero, so the LFSR stays in
this state.

When a 1 is introduced, the circuit counts through
24 � 1 = 15 di�erent non-zero bit patterns. The se-
quence is shown on right. Each box corresponds to
a particular state of the shift register. The leftmost
(top) bit decides whether the \10011" XOR pattern
is used to compute the next value of the shift register,
or if the register just shifts left.

This circuit uses 4 FFs, but you can build a similar
circuit with any number of FFs. For a particular n,
you may need more XOR gates on di�erent positions.
The table of primitive polynomials on Page 6 can be
used to design these circuits. Section 7 discusses why
these circuits do what they do.

1

2 Lab 5 | Shift Registers and Counters September 23, 1999

3.1 Using the Table to Build an LFSR

To build a k-bit LFSR, number the
ip-
ops starting with 1 on the right. The feedback path comes
from the Q output of the leftmost FF k.

Find the primitive polynomial of the form xk + � � � + 1 in the table on Page 6. Its x0 = 1 term
corresponds to connecting the feedback directly to the D input of
ip-
op 1. Each term of the form xn

corresponds to connecting an XOR between
ip-
op n and n+ 1.
To build the LFSR of Figure 1, I used the primitive polynomial x4 + x+ 1:

x4
|{z}

F4's Q Output

+ x
|{z}

XOR between F1 and F2

+ 1
|{z}

F1's D input

To build an eight-bit LFSR, use the primitive polynomial x8 + x4 + x3 + x2 + 1 and connect XORs
between F2 and F3, F3 and F4, and F4 and F5.

4 Messages, Parity Bits, and Error Correction

Now, suppose we will make the following modi�cation to our shift register. Instead of simply feeding Q4

back into the �rst FF, we XOR it with an incoming bit sequence. The new circuit is shown on Figure 3.

F1

Q1Q2Q3Q4

serial_in

clk

Q D

F4

Q D

F3

Q D

F2

Q D

Figure 3: A four-bit linear feedback shift register

XOR 0 0 0 0 0

XOR 0 0 0 0 0

XOR 0 0 0 0 0

XOR 0 01 1 1

XOR 0 0 0 0 0

XOR 0 01 1 1

4 check bits

0 0 0 0

0 0

0

0

0

0 0

0

0 0

bit sequence : 1 1 0 0 1 0 0 0 1 1 1 0 0 0 0

1

1

0

0

1

0

1

10

1 10

10 1

1 1 0 0

1 0 1

0 0 1 1 1

.

01 0

11 message bits

Figure 4: LFSR processing an input sequence

The operation is similar to the
simple LFSR shown on Figure 1, but
in this case the values of the shift
register don't follow a �xed pattern
| because they depend on the serial
input sequence. What we are are in-
terested in is the �nal value of the
shift register after all serial input bits
are shifted in. In this case it is the
value of the register after 15 cycles :
\1010".

Note that the length of the input
sequence is 24 � 1 = 15, the same
as the number of di�erent nonzero
patterns for the original LFSR. Also
note that our binary message really
occupies only 11 bits, the remaining
4 bits are \0000". Those are reserved
for \check bits" (or parity bits). They
would be replaced by the �nal result
of our LFSR | \1010".

September 23, 1999 Lab 5 | Shift Registers and Counters 3

Thanks to some \magic", when we replace the last 4 bits of the sequence with our computed parity
bits, and then run it through our modi�ed LFSR, we get a \0000" �nal result. So what the 4 parity bits
do to the message sequence, they \neutralize" it with respect to our LFSR engine. Here is the whole
process is shown once again :

1 0 1 0

0 0 0 01 1 0 0 1 0 0 0 1 1 1 1 0 1 0

1 1 0 0 1 0 0 0 1 1 1 0 0 0 0

The new sequence, \110010001111010" is thus our complete \message". Now, why is this all useful?
If we enhance our message with the 4 parity bits, we make our message less prone to errors. When
the receiver receives the whole message, it will run it through our LFSR engine. When the message is
received correctly (and, assuming there is no more than 1 error in it), the �nal value of the LFSR should
be 0. When it is not zero, an error occurred in one of the 15 positions.

It turns out that, based on the principle of superposition, an all-zero message with \1" in the same
position as on which the error occurred will produce the same result as the message containing the error.
This could be summarized as follows :

0 0 0 0 1 0 0 0 0 0 0 0 0 0 0

1 1 0 0 0 0 0 0 1 1 1 1 0 1 0

0 1 1 1

0 1 1 1

Our message was received with an error in the 5th position and so the LFSR engine produced an
\0111" output (usually called a symptom). The bottom sequence contains \1" in the �fth position, and
will produce the same symptom.

There are 15 di�erent symptoms | one for each bit position. Therefore once we know the symptom
for our received message, if it is nonzero, we can determine the bit position on which the error occurred.
So this method not only lets us detect whether there was an error or not, it also lets us correct that
error, on the assumption that there was only one error.

5 What to Build

Your task is to Build a LFSR on the Xilinx Design Demonstration Board and an FSM that will perform
the parity computation on a 255-bit message sequence. Your LFSR will have 8 FFs and will produce 8
parity bits. The previous section describes how to build an 8-bit LFSR.

Figure 5 shows the block diagram of the whole circuit. You only need to build the parts shaded in
gray. Moreover, you can use standard XILINX parts for the 8-bit counter (CC8CE) and the comparator
(look that one up in the lab reader). You need to design the Control FSM and the LFSR.

The ROM will be provided to you { it outputs a single bit based on the address provided by the
8-bit counter. This will be your serial bit sequence. The value on the DIP switches directly replaces the
last 8 bits in the 256-bit sequence.

The circuit would have two modes, controlled by the SPARE button. In the �rst mode (MODE=1),
your LFSR would shift in 256 bits from the ROM, then stop, and display the result on the 8 LEDs.

In the second mode (MODE=0), your LFSR would process only the \10000000....." sequence (the
ROM already does that for you). The Control FSM would then stop as soon as the pattern computed
by the LFSR matches the pattern on the DIP switches. The �nal number stored in the 8-bit counter
(COUNT[7:0]) will be displayed on the 2 digits on your XILINX board. The number is directly related
to the position of the error in the bit sequence. You should be able to understand why this is so, and
be able to explain it to your TA (Hint: Think about the LFSR when all bits and the input are zero).

The Control FSM is quite simple. It has 3 inputs: the TC output of the counter, the result of the
comparator, and the MODE button. It has 2 states: upon RESET, it enters an ACTIVE state | it
enables the counter and the LFSR. Then it waits until either TC or the PAR=LED signals go high
(depending on MODE), and then enters a DONE state. The only way to leave the DONE state is
another RESET. Thus we only need 1 FF for the state variable. Use the standard procedure to design
this FSM: start with a state diagram, then go through the truth table, all the way down to gates.

To summarize the things you need to build :

4 Lab 5 | Shift Registers and Counters September 23, 1999

RESET

ROM LFSR

co
m

pa
ra

to
r

CE

PAR[7:0]

LED[7:0]

MODE

SPARE
button

LED digits

D
IP

 s
w

itc
he

s
COUNT[7:0]

TC

ENABLE

CLK

CLK

PAR=LED

button
RESET

CLK

LE
D

s

8-
bi

t c
ou

nt
er

Control FSM

Figure 5: Lab5 block diagram

1. Build your 8-bit LFSR as shown in Section 3.1. Keep in mind that you need to provide an enable
signal for the FFs. If the \enable" is o�, the LFSR should keep its value.

2. Add the 8-bit counter.

3. Add the ROM block (go to the wvlib/CS150 directory and use ROM.SCH), then connect it to the
counter and your LFSR. You should copy the ROM schematics and it's symbol into your directory,
since you will be editing them later.

4. Add the comparator and design the Control FSM.

5. Load the LAB5.SCH �le from the wvlib/CS150 directory and append it as a second page of your
schematic just like in Lab 3. This is your front panel. Examine it and name signals in your
schematic so that you connect to the switches and LEDs. The following is a list of LEDs, DIP
switches and pin number. This is already done for you though.

left right
switch 19 20 23 24 25 26 27 28
LED 61 62 65 66 57 58 59 60

Table 1: DIP switch and LED pins

6 What to Do

You will use this circuit to compute the 8 parity bits for a 255-bit long message stored in a ROM. The
ROM stores a random bit sequence that we have chosen | ours really contains 256 bits, the top bit
must be \0" though.

September 23, 1999 Lab 5 | Shift Registers and Counters 5

Your FSM will have to cycle 256 times and the LFSR will process all 256 bits stored in the ROM
and then stop | displaying the result value of the 8 LEDs. If your DIP switches are set to \00000000"
initially, the pattern on your LEDs will be your parity bits.

The next step you enter the same pattern on the DIP switches, rerun the LFSR and you should get
a \00000000" pattern out | just like a correct sequence should do.

Finally you will experiment with error correction. Leave your parity bits on your DIP switches after
your previous task, and go back to your ROM schematic and change one bit in the bit sequence. You
click on one of the ROM blocks, select the \INIT" attribute, and change one of the bits. Then you
recompile the whole circuit and run the new sequence through your LFSR with your old parity bits.
Since there is an error, you will get a nonzero value on the LEDs.

Next, you enter this error value on the DIP switches and run the second mode. The number on the
2 digits indicates the position of the error. Go back to your ROM schematic and check that indeed that
is the same position you have introduced the error.

Again, to summarize :

1. Run MODE=1 with the DIP switches all zero. Write down the resulting parity bits.

2. Enter the parity bits on the switches, run MODE=1 and observe the LEDs. They should all be
zero.

3. Introduce an error in your bit sequence | modify the ROM schematic. Recompile the design.

4. Use MODE=1 operation to detect the error and use MODE=0 to �nd it's position.

Since the XChecker cable clock runs at about 1MHz, it would be very di�cult to see what your circuit
is doing. Therefore we have used a 16-bit counter to divide the clock by 216, which slows the frequency
to about 15Hz. At that speed you will be able to see the operation of the LFSR. If you want to observe
your circuit cycle-by-cycle, you can use the \Apply" button on the Hardware Debugger control panel.
However, �rst you will need to bypass the 16-bit counter in the schematics. Ask the TA if you don't
know how.

7 Galois Fields

This circuit behaves as it does because it is performing multiplication on a �eld, a set with two operations
de�ned on it: \addition" and \multiplication." The set is closed under these operations, the associative
and distributive laws hold, there is both an additive and multiplicative identity element, there is an
additive inverse for every element, and a multiplicative inverse for every non-zero element.

Familiar in�nite �elds include the set of rational numbers, the set of real numbers, and the set of
complex numbers. The set of integers is not a �eld, since most integers do not have a integer multiplicative
inverse.

Finite �elds are called Galois (gal-wah) �elds. Binary numbers form a simple Galois �eld with two
elements called GF (2). The XOR function is \addition," and the AND function is \multiplication."

Consider polynomials whose coe�cients come from GF (2), that is, each term of the form xn is either
present or absent. For example, 0, 1, x, x2, and x7 + x6 + 1 are all GF (2)-coe�cient polynomials.

Adding these polynomials is easy. \Add"
(XOR) each element individually|there is
no carry:

x4 + x3 + x+ 1
+ x4 + x2 + x

x3 + x2 + 1

Multiplying these polynomials is also easy.
Multiplying by a monomial of the form xn

is like shifting to the left:

x2 + x+ 1
� x+ 1

x2 + x+ 1
x3 + x2 + x

x3 + 1

6 Lab 5 | Shift Registers and Counters September 23, 1999

Primitive Polynomials
x2 + x+ 1
x3 + x+ 1
x4 + x+ 1
x5 + x2 + 1
x6 + x+ 1
x7 + x3 + 1
x8 + x4 + x3 + x2 + 1
x9 + x4 + 1
x10 + x3 + 1
x11 + x2 + 1
x12 + x6 + x4 + x+ 1
x13 + x4 + x3 + x+ 1
x14 + x10 + x6 + x+ 1
x15 + x+ 1
x16 + x12 + x3 + x+ 1
x17 + x3 + 1
x18 + x7 + 1
x19 + x5 + x2 + x+ 1
x20 + x3 + 1
x21 + x2 + 1
x22 + x+ 1
x23 + x5 + 1
x24 + x7 + x2 + x+ 1
x25 + x3 + 1
x26 + x6 + x2 + x+ 1
x27 + x5 + x2 + x+ 1
x28 + x3 + 1
x29 + x+ 1
x30 + x6 + x4 + x+ 1
x31 + x3 + 1
x32 + x7 + x6 + x2 + 1

If we use this addition and take the results of this multiplication
modulo1 a prime polynomial2 p(x), these polynomials form a Galois
�eld. For any degree, there is at least one prime polynomial. By using
it, we can form GF (2n), the Galois �eld with 2n elements, for any
positive integer n.

Every Galois �eld has a primitive element: an element � such that
every non-zero element can be expressed as a power of �. So if we
know a primitive �eld element and can raise it to any power, we can
obtain all non-zero elements of a �eld.

Certain choices of p(x), the prime generating polynomial for a �eld
(i.e., multiplication is taken modulo this polynomial), make the simple
polynomial x a primitive element. It turns out there is such a p(x),
called a primitive polynomial, of every degree.

For example, the polynomial x4 + x + 1 is primitive. So � = x

is a primitive element, and successive powers of � will generate all
non-zero elements of GF (16):

�0 = 1
�1 = x

�2 = x2

�3 = x3

�4 = x+ 1
�5 = x2 + x

�6 = x3 + x2

�7 = x3 + x+ 1
�8 = x2 + 1
�9 = x3 + x

�10 = x2 + x+ 1
�11 = x3 + x2 + x

�12 = x3 + x2 + x+ 1
�13 = x3 + x2 + 1
�14 = x3 + 1
�15 = 1

This pattern of coe�cients matches the
bits in the �gure on Page 1.

In general, �nding these primitive polynomials is di�cult. Looking them up in a table, such as the one
on the right, is easiest.

The equivalences between Galois �elds and hardware are:

Galois Field Hardware
Multiplication by x () shift right
Taking the result mod p(x) () XOR-ing with the coe�cients of p(x)

when the most signi�cant coe�cient is 1.
Obtaining all 2n�1 non-zero elements by
evaluating xk for k = 1; : : : ; 2n � 1

() Shifting and XOR-ing 2n � 1 times

This is a small fraction of the power of Galois �elds, which are used throughout the large, rich �eld
of error control (error-correcting) codes.

1This ensures the leading coe�cient of the result is smaller than the leading coe�cient of p(x). Do this by subtracting

a (polynomial) multiple of p(x) from the result. Often this multiple is 1, corresponding to XOR-ing the result with p(x).
2That is, a polynomial that cannot be written as the product of two non-trivial polynomials q(x)r(x).

September 23, 1999 Lab 5 | Shift Registers and Counters 7

Name: Name:
Lab Section (Check one)
M: AM PM T: AM PM W: AM PM Th: PM

8 Checko�s

1. Schematics complete before lab. TA: (10%)

2. Use the table of primitive polynomials on Page 6 to draw a schematic for an LFSR with 29�1 = 511
unique states. How many
ip-
ops do you need? How many XORs?

TA: (10%)

3. Build your LFSR shift register. TA: (15%)

4. Compute the parity bits for the provided ROM sequence TA: (20%)

5. Show that when entering the parity on the DIP switches, the LEDs will all go to \0"

TA: (20%)

6. Introduce an error into the ROM sequence and use the LFSR to �nd out where it was.

TA: (25%)

7. Extra Credit (Only if completed during your Lab):

Make the spare button toggle between the two display modes
OR show how you can single-step your circuit using the Apply button

TA: (5%)

8. Turned in on time TA: (full credit: 100%)

9. Turned in one week late TA: (1/2 credit: 50%)

