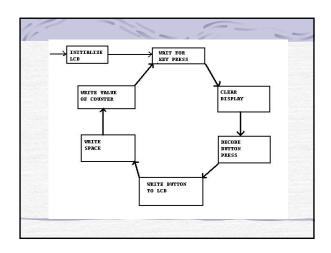
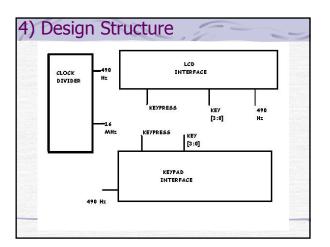
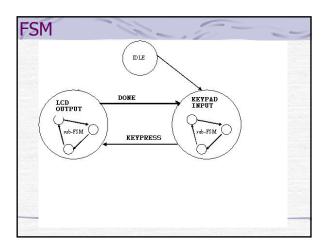

Keypad and LCD Interface 1) Physical Interface 2) Keypad 3) LCD (Optrex DMC-24227) 4) Design Structure and FSM 5) Design implementation 6) Hints and cautions

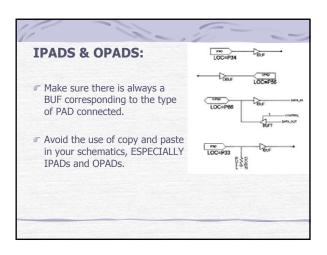




	1110			Vcc=5.0V±1	
Parameter	Symbol	Conditions	Min.	Max.	Unit
Enable Cycle Time	teye	Fig. 1, 2	500	3	ns
Enable Pulse Width	PWEH	Fig. 1, 2	230	3	ns
Enable Rise/Fall Time	t _{Er} , t _{Ef}	Fig. 1, 2	77.5	20	ns
Address Setup Time	tas	Fig. 1, 2	40	=	ns
Address Hold Time	tan	Fig. 1, 2	10	.=:	ns
Write Data Setup Time	t _{DSW}	Fig.1	80	.=:	ns
Write Data Hold Time	t_{DHW}	Fig.1	10	3	ns
Read Data Delay Time	time	Fig.2	77.0	160	ns
Read Data Hold Time	tone	Fig.2	5		ns


- The enable pulse can be created using a 490 Hz clock.
- In the 4-bit mode, the control bytes are sent on consecutive enable cycles. The most significant 4 bits (DB[7:4]) are sent first, followed by the remaining 4 bits of the byte (DB[3:0]).





At start up, (after downloading to the Xilinx chip) the LCD must be initialized before displaying anything.
Remember to clear line whenever you give it a new input.
You can ground R/W since we are not reading from the LCD in this checkpoint.

6) Hints and Cautions

- Really sit down and plan your FSM before doing anything in Xilinx. Write it down, draw state diagrams... etc understand what's suppose to happen.
- Minimize as much as possible.
- Look at error messages.
- The oscilloscope is your friend!
- Use a potentiometer for the LCD power (if there's nothing on the screen, give the potentiometer a tweak).